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Abstract: Floods, as natural occurrences, often result in significant impacts on human life. 

The construction of flood maps plays a crucial role in devising appropriate strategies to 

mitigate the adverse effects of floods. In recent decades, there has been notable attention 

towards flood mapping methods utilizing remote sensing images. This paper introduces a 

methodology for generating an inundation map for rainy season and river network. To 

achieve this objective, we investigated the use of the recently developed Modified 

Normalized Difference Water Index (MNDWI) within the Google Earth Engine platform 

for extracting surface water.  The study yielded flood maps extracted with considerable 

precision, facilitating the calculation and analysis of flood extents within the study area. 

Keywords: Flood damage; Sentinel–2; Google earth engine. 
 

1. Introduction 

Since the dawn of history, floods have been one of the natural disasters that have 

appeared and caused a tremendous influence on human life. Especially in recent decades, 

floods have become increasingly fierce and unpredictable. Statistics show that the number of 

people affected by floods increased steadily from 147 million people per year (1981-1990) 

to 211 million people per year (1991-2000) [1]. Countries that have suffered from the severity 

of floods include China (2007), Thailand (2011), Japan (2011), India (2012), Myanmar 

(2012); in Europe: Central and Eastern European countries (2006 and 2013), France, Greece, 

Turkey (2007); in the Americas: Guatemala (2005), the United States (2009); in Africa: 

Angola (2010), Nigeria (2010) [2, 3]. Accordingly, it may be considered that floods are global 

in nature and increasingly complex, causing heavy damage. In terms of scale, they are not as 

intense as a tsunami or storm, but their impact is long-lasting and leaves many atrocious 

consequences for future generations. 

Vietnam has faced floods since ancient times. This disaster occurs widely across the 

country, with floods appearing most frequently in the Central region, where rivers have steep 

slopes and high water concentration. In the Central region, the flood time is very rapid due 

to the swift flow of rivers and the inappropriate management of irrigation and hydroelectric 

reservoirs. As a result, the occurrence of floods, both natural and artificial, is quite frequent, 

posing significant challenges and obstacles for flood prevention management [4]. Flood 

situations and damage in some river basins in the Central region, such as the Lam River basin 

(total damage due to storms and floods in the 21 years from 1990 to 2010 amounted to more 

than 3,300 billion VND), Vu Gia - Thu Bon (from 1997 to 2009, natural disasters in the Vu 

Gia - Thu Bon river basin resulted in 765 deaths, 63 missing persons, and 2,403 injuries, with 

a total property damage value of more than 18,000 billion VND), and Ve - Tra Khuc (from 
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1996 to 2010, natural disasters caused 601 deaths and missing persons, 1,017 injuries, and 

the collapse and sweeping away of 8,501 houses [5–7]. According to statistics from 1990 to 

2010, the Ca River basin suffered 34 direct landfall storms, with an average of 1 to 1.5 storms 

each year. The wind speed caused by the storms reached level 9 to 10, with gusts up to level 

12. Storms often arrive in the Ca River basin from late September to early November. The 

maximum wind speed observed in Tuong Duong was 25 m/s in the west-north direction 

(1975), in Quy Chau, it exceeded 20 m/s in the west-north direction in 1973, and in Do Luong, 

it reached 28 m/s in the east-north direction (1965). Regarding floods, in the past 21 years, 

there have been 29 significant floods causing tremendous damage to people and property. 

Floodwater level monitoring data over the past 40 years shows that the greatest floods 

occurred in the main stream. Notable floods in the Ca River basin include those in 1954, 

1963, 1973, 1978, 1988, 2007, and 2010. On average, major floods occur every 9 to 10 years. 

Some years have resulted in dike failures, as seen in the floods of 1954, 1978, 1988, and 

1996. Especially in the flood of 1954, many dikes were breached (from Nam Dan to the sea), 

with floodwater flowing from the river into the fields for a continuous 16-days period. The 

total damage caused by storms and floods in the 21 years from 1990 to 2010 amounted to 

more than 3,300 billion VND. Solutions to minimize damage caused by floods include a set 

of structural measures (building flood prevention works, diverting floods, and relocating 

structures and people from flood-prone areas) as well as non-structural solutions [8–10]. The 

group of construction solutions is often directly effective but requires significant funds, 

making some solutions in this category challenging to implement. Therefore, priority is given 

to solutions within the non-structural group. One effective non-structural solution involves 

establishing a database with information on floods, risks, and the potential impact of floods 

on people's economic livelihoods. This includes data on flood depth, the extent of flooded 

areas within the city, and flood-prone zones [11–13]. Creating such a database enables 

localities to proactively formulate timely plans and solutions when faced with floods, 

representing a reasonable choice with high economic efficiency. In recent years, flood maps 

have become an increasingly effective tool for assessing the impact of floods on people. 

These maps provide a visual representation of the scope and level of flooding. Currently, 

there are various methods for constructing flood maps, with the most popular one recently 

applied in Vietnam being a combination of hydraulic modeling and GIS tools. This method 

has been implemented for more than a decade, utilizing both one-dimensional and two-

dimensional models to construct flood maps. Notable applications include the study [14, 15] 

for the Quang Nam, the study [16, 17] for rivers in Khanh Hoa province, and [18, 19] for the 

Ben Hai and Thach Han river systems. While this method yields positive results and offers 

flexibility in calculating scenarios, it does have several limitations. A significant requirement 

is the considerable amount of input data needed for the model, necessitating time and effort 

for field surveys, data collection, and editing. The utilization of this method requires an 

experienced expert to verify and calibrate the model appropriately. Notably, in areas affected 

by rainfall in the field, the current hydraulic model may not fully address the issue. However, 

with the advancement of remote sensing technology, a new avenue has emerged for data 

collection and analysis. Remote sensing images have the capability to collect data over a 

broad area and an extended period with high repetition frequency. The availability of free 

satellite sources enhances the potential of this method as a valuable resource The method of 

using remote sensing images has been adopted by numerous domestic and international 

authors to determine the extent of flooding. The study [20] determined the coastline by 

calculating the difference threshold between the reflection levels in the green band and the 

NIR and MIR bands. However, the use of optical images may be hindered if the sky is 

covered with clouds, especially during periods of heavy rain. This challenge was addressed 

by [21–23] who utilized remote sensing images, ensuring that the information received is not 

limited by cloud cover. While this approach is suitable, it does not distinguish between 
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various water bodies (such as rivers and lakes) and flooded lands. Additionally, the study 

compared the differences between flooded and unflooded photos to discern areas affected by 

rain and areas with regular water presence. 

This article presents the results of creating flood maps for the Lam River using Multiband 

Water index (MNDWI), implemented on the Google Earth Engine cloud computing platform. 

Google Earth Engine is a cloud-based geospatial analysis platform that enables users to 

visualize and analyze Earth satellite imagery. The platform’s dataset encompasses over 40 

years of historical and current global satellite imagery, along with the tools and computing 

power necessary to analyze and mine that extensive data trove without the need to download 

it to a local computer. Additionally, for more specific research purposes, users can create 

custom scripts by visiting https://code.earthengine.google.com/ [25,26]. From the 

perspective of flood research, the study [24] highlighted that with GEE, users no longer need 

to switch between different platforms where data is originally collected and distributed, so 

that GEE applications are reusable and can work with many different configurations. In the 

Field of Flood Research, it further demonstrates its usefulness by improving the reusability 

of GEE scripts and creating ready-to-use applications for other research areas, thus making 

it possible quickly create a flash flood map. 

2. Materials and methods 

2.1. Description of the study area 

The Lam River basin, the second largest in the North Central region, originates from the 

mountainous areas of Laos. Covering an expansive area of 27,200 square kilometers within 

Vietnamese territory, it stretches from 18°15’ to 20°10’30” North latitude and 103°45’20” to 

105°15’20” East longitude. This basin encompasses significant portions of Nghe An and Ha 

Tinh provinces, along with a part 

of Nhu Xuan district in Thanh 

Hoa province. 

The primary stream of the 

Lam River originates from the 

lofty peaks of Xieng Khouang 

province in Laos, where it gains 

elevation of over 2,000 meters. 

Initially flowing in a Northwest - 

Southeast direction, it then veers 

to a West - East trajectory before 

eventually meeting the sea at Cua 

Hoi. Despite its considerable 

length of 531 kilometers, the Lam 

River maintains a relatively stable 

main bed with minimal mudflats, 

showcasing a meandering 

coefficient of 1.74. With a river 

density of 0.6 km/km2, the Lam 

River system is bolstered by 44 

level I tributaries, which contribute 

significantly to its hydrological 

dynamics. Noteworthy among these tributaries are the Nam Mo River, Hieu River, Giang 

River, and La River. These tributaries, often originating from regions characterized by heavy 

rainfall, have a significant impact on the overall flow patterns within the basin [7, 27]. 

 

Hoang Sa

Islands

Truong Sa

Islands

Figure 1. Map of the study area - Lam river basin. 

https://code.earthengine.google.com/


J. Hydro-Meteorol. 2024, 19, 1-11; doi:10.36335/VNJHM.2024(19).1-11 4 

One of the most pressing challenges facing the Lam River basin is the occurrence of 

significant floods, primarily attributed to prolonged heavy rainfall on a large scale, coupled 

with the basin's slope and intricate river network. These floods, concentrated predominantly 

in the middle and lower reaches of the basin, are characterized by total rainfall exceeding 650 

mm in the rain center, with extreme events reaching up to 1,500 mm, as witnessed during the 

devastating flood of 1978. An intriguing aspect of floods in the Lam River basin is the 

occurrence of dual peaks, particularly notable in major flood events such as those in 1978, 

1988, 1980, and 2008 [28, 29]. The latter peak tends to be larger than the initial one, 

accentuating the complexity of flood dynamics within the basin. Notably, these peaks often 

coincide with the saturation of the basin's storage capacity, typically observed during the 

month of September. Understanding the intricate characteristics of the Lam River basin is 

paramount for effective flood management and mitigation strategies. By comprehensively 

analyzing its hydrological patterns, tributary dynamics, and flood behavior, policymakers and 

stakeholders can implement targeted measures to minimize the impact of floods and 

safeguard the communities residing within the basin and its vicinity. 

2.2. Methods 

While numerous techniques for extracting surface water have been introduced in 

previous studies, accurately extracting surface water in areas with low-reflectance 

background surfaces, such as mountainous shadows, high building shadows, and dark built-

up areas like asphalt roads and dark building materials in downtown, remains a challenging 

problem. The presence of low-reflectance surfaces can lead to misclassification due to their 

similar low reflectance with surface water [25, 30, 31]. 

The passage discusses the development of a Modified Normalized Difference Water 

Index (MNDWI) aimed at improving the accuracy of surface water extraction in regions with 

complex backgrounds. The study evaluates the effectiveness of the proposed MNDWI 

compared to six other commonly used water indices across various climatic zones and 

seasons. The objective is to create a water index (MNDWI) that consistently delivers highly 

accurate surface water extraction, even in the presence of environmental noise. 

In Vietnam, there are various approaches for calculating the MNDWI index on Landsat 

images, used for studying water resource changes [32], assessing coastline changes [33], and 

urban surface water body changes [34]. These studies typically involve downloading satellite 

images and processing them using specialized software, which can be limited due to pre- and 

post-processing requirements and the computational demands of the software. However, 

using platforms like Google Earth Engine (GEE) can overcome these limitations by providing 

efficient processing and reducing solution time [24, 30]. 

The study [35] specifically focuses on calculating three water indices (NDWI, MNDWI, 

and WNDW) to interpret water areas in Sentinel–2 images on the GEE platform. The results 

show high efficiency in processing and solution time, indicating the potential of using GEE 

for remote sensing image analysis, particularly for water resource monitoring and 

management in Vietnam. 

The MNDWI was chosen for water classification, since it has produced the best results 

in the literature among the index-based algorithms. The MNDWI is based on distinctions 

between water and other low-reflectance surfaces [36], restricting the brightness value ranges 

used to those in the lower or “darker” section of the terrestrial spectral range, being 

characteristic of water [37]. The MNDWI is intended to limit non-water pixels while 

improving surface water information. The study [38, 39] provided details of the concept of 

MNDWI, and the calculation is given in Equation (1). In addition, to eliminate mountainous 

shadows that were mistakenly classified as water bodies, we placed a threshold of 5% slope 

over the study area, and areas with higher slopes were automatically excluded from the water 

class. 
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                              MNDWI =
Green − SWIR

Green +SWIR
  [40–42]                                            (1) 

where Green is the pixel values from the green band; SWIR is the pixel values from the 

short-wave infrared band. 

The research methodology is depicted through the following research diagram (Figure 

2). 

 

Figure 2. Flowchart illustrating the research steps. 

2.3. Data collection 

The authors utilized Sentinel–2 remote sensing imagery with a spatial resolution of 10 

meters from the Google Earth Engine dataset. The dataset comprises 178 images acquired 

between October 1, 2015, and October 31, 2022, which were employed to construct a 

comprehensive river and stream network map. Specifically, an image captured on October 

17, 2022, was employed to generate a flood map post-rainfall. By overlaying these two maps, 

the flood extent was extracted (Figure 3). Given that each individual image only covers half 

of the basin area, the authors undertook specialized processing of image pairs to seamlessly 

combine them, thereby creating a unified image of the entire basin. Figure 2 illustrates the 

process flowchart for distinguishing and identifying flooded and non-flooded areas using the 

Modified Normalized Difference Water Index (MNDWI) on the Google Earth Engine (GEE) 

platform as implemented in the study. The steps and main processes for Sentinel–2 image 

interpretation can be summarized as follows. Firstly, Sentinel–2 images covering the study 

area are collected. Next, image processing is conducted to eliminate the effects of noise 

factors. Subsequently, a high-pass filter is applied to homogenize the spatial resolution (10 

m) for all bands. Using the MNDWI index, pixels are classified into water and non-water 

(post-rain flood) areas within the study area. Finally, the computed results are evaluated to 

assess the accuracy of identifying, distinguishing, and interpreting water and non-water areas 

within the study region. Post-rain flood areas and river/stream networks are overlaid to 

calculate the flooded areas. Then, these areas are extracted in vector form and inputted into 

MapInfo software for comparison with land use maps, calculating damage extents for each 

land type, and editing the final product map. 
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The test data includes the flood map of the Lam River basin developed as part of the 

BDKH19 project in 2015, along with flood trace survey data from 2013 to 2014 [40, 41], as 

documented in previous studies [7, 9, 28]. These datasets were utilized to perform a 

comparative analysis with the threshold classification results. The comparison revealed that 

the flood area calculated using both methods exhibited equivalent accuracy, reaching 99%. 

 

Figure 3. The output of water mask interpretation (MDNWI menthod) in Google Earth Engine. 

To assess the accuracy of interpretation results derived from remote sensing imagery, 

the study incorporated additional field datasets comprising flood trace surveys (comprising 

200 surveys) using the Kappa error construction method [42–44]. The Kappa error of the 

interpretation results obtained from remote sensing imagery demonstrated a high accuracy 

level, reaching 97%. 

3. Results and discussion 

The analysis of satellite images (Figure 4) revealed that the total flooded area spans 

98,143 hectares. Predominantly, flooding is concentrated in several districts, including Ky 

Son and Tuong Duong (Nam Mo - Nam Non river area), Que Phong and Quy Chau (Upper 

Hieu river), Quy Hop Nghia Dan, Thai Hoa, Tan Ky, and Con Cuong (Ca river), as well as 

Anh Son, Do Luong, Thanh Chuong (Ca river), parts of Huong Son, Huong Khe, Vu Quang, 

Duc Tho (Ngan Pho, Ngan Sau, La rivers), and Hung Nguyen, Nghi Loc (Lam River 

downstream) districts. The areas affected by flooding mainly concentrate in the downstream 

areas of Thanh Chương, Nam Đàn, Đàm Đàn, and Hưng Nguyên districts. Places less affected 

by floods are typically mountainous regions, primarily consisting of forested and perennial 

crop lands. This result is consistent with the findings in document [4] when calculating flood 

exposure. The obtained results closely resemble those of previous flood studies [4, 39, 40] 

utilizing flood models. 

To assess the impact of flooding on land use categories within the study area, the authors 

utilized land use maps provided by the Ministry of Natural Resources and Environment in 

2010, which delineate over 70 distinct land types. These were classified and grouped into 

five main categories: bare land and rivers, forest land and industrial crops, agricultural land 

and aquaculture, residential and commercial land, and public infrastructure. The results, as 

presented in Table 1, indicate that the scope of flood damage predominantly affects public 

infrastructure such as schools, hospitals, flood-resistant housing, administrative areas, and 

roads. The results indicate that areas used for public facilities such as schools, hospitals, 
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storm shelters, administrative centers, and transportation routes are frequently prone to 

flooding. These locations often host large populations seeking refuge from floods and serve 

as centers for relief efforts. If transportation routes and densely populated areas are flooded, 

residents may become isolated, leading to increased risks to both lives and finances. 

 

Figure 4. The Lam River basin flood map derived from remote sensing imagery, following the 

extraction of flood areas using Google Earth Engine. 

Therefore, the government needs to inspect and maintain communication systems before 

the flood season to ensure the continuity of communication networks within flood-affected 

areas. Public infrastructure should be robust and spacious enough to accommodate residents 

seeking refuge. Residential and commercial land use areas are less susceptible to flooding 

compared to public infrastructure; however, since households' residences contain family 

assets including food supplies, livestock, and other household items, the government should 

encourage people to build homes in safe areas. Families at risk of flooding should be 

supported to construct sturdy residences meeting flood-resistant standards to mitigate flood 

risks. 

Table 1. The range of damage due to flooding calculated through satellite image analysis results. 

No Land-use type Damaged area (ha) Damaged percentage (%) 

1 Public land 45460 45.75 

 

2 

Housing land and production and business land 
18255 

18.37 

3 Agricultural land and aquaculture land 14200 14.29 

4 Forest land and industrial crops 16500 16.61 

5 Bare land and rivers 4947 4.98 

Total damage 98143 99362 

The residents living in the downstream area of the Lam River primarily engage in 

agriculture, with rice cultivation being the main source of food and income for them. When 

rice paddies and flower fields are flooded, it causes significant damage and long-term impacts 
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on the livelihoods of the people. They have to wait until the next planting season to restore 

their production activities. However, rice and flowers are less resilient to flooding compared 

to other industrial crops, thus the extent of damage to rice paddies and flower fields during 

floods is higher than that of industrial crops. Meanwhile, vacant lands or higher ground near 

rivers are less prone to flooding. 

4. Conclusions  

The study has demonstrated the effectiveness of flood analysis results obtained from 

Sentinel–2 remote sensing images using the MNDWI method, yielding relatively good 

outcomes. The analysis revealed concentrated flooding in several districts, including Ky Son, 

Tuong Duong, Que Phong, Quy Chau, Quy Hop, Nghia Dan, Thai Hoa, Tan Ky, Con Cuong, 

Anh Son, Do Luong, Thanh Chuong, Huong Son, Huong Khe, Vu Quang, Duc Tho, Hung 

Nguyen, and Nghi Loc, with the Lam River downstream experiencing significant impact. 

Additionally, the study calculated the extent of flood damage, highlighting the predominance 

of affected areas in public lands (44.26%), agricultural lands (34%), and residential lands 

(22%), emphasizing their critical role in flood prevention efforts. The research findings 

contribute to flood damage assessment and monitoring, underscoring the need for local 

authorities to enhance flood prevention measures through robust planning and prompt 

implementation to restore normalcy in production and daily activities, thereby minimizing 

economic and human losses. Researching flood damage through inundation area using a 

remote sensing index remains constrained. In forthcoming studies, the author intends to 

expand their research by assessing the effects of water extraction through multiple remote 

sensing indices. 
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Abstract: Microplastic research plays a crucial role in identifying microplastic polymers. 

Scientists use different methods such as Flame tests, Differential thermal scanning, 

Thermogravimetric analysis, and Infrared spectroscopy to accomplish this. The objective of 

this study incluce: (i) Firstly, it aims to summarize recent research trends on techniques for 

determining polymer types in various environments. It provides an overview of each technique 

and compares their strengths and limitations. (ii) Secondly, it determines the types of 

microplastics in surface water samples in the Saigon - Dong Nai River basin, during the period 

2023. The Fourier transform infrared spectroscopy (FTIR) technique is applied according to 

the total attenuation method (ATR-FTIR). The study shows that it is possible to quantify and 

classify microplastics by manual observation or through observation or microscopy. However, 

determining the type of polymer is almost impossible. To overcome this limitation, scientists 

use a combination of physical (e.g., light microscopy, magnifying microscopy), chemical (e.g., 

spectroscopy), and thermal analysis techniques. The study results reveal that there are more 

than 60 types of microplastics present in the main water supply for daily drinking and drinking 

purposes of the people of Ho Chi Minh City and neighboring provinces. It provides a 

foundation for river basin water resource managers to propose appropriate water resource 

management measures and programs during the process of water exploitation and use in the 

area. 

Keywords: Identification of microplastics; Microplastic analysis methods; Microplastics in 

surface water; Microplastics; Saigon River - Dong Nai. 
 

1. Introduction 

Since 2019, almost the whole world has been and will be struggling with a global 

pandemic - the Covid 19 epidemic. The World Health Organization has requested a 40% 

increase in disposable PPE (Polyphenylene Ether) production. Currently, the most commonly 

produced plastics are polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), 

polyethylene terephthalate (PET) and polystyrene (PS) [1]. The term microplastics was first 

mentioned by Thompson and colleagues in 2004 [2]. Microplastics are defined as particles 

ranging in size from 1-5000 μm [3]. More clearly, it is distinguished as plastic particles, 

pieces, and fibers with a size of 5 to 1 mm, while a size of 1 mm or less is considered 

microplastic (nano-sized). They pose a potential risk to human health and the natural 

environment [4].  

Identifying microplastics is quite complicated, there are many different methods [5]. 

Over the years, identification techniques such as Fourier transform infrared spectroscopy [6], 

Raman microscopy [7], gas chromatography desorption-mass spectrometry [8] or pyrolysis 
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gas chromatography [9] have had many improvements and more in-depth research. Many 

studies have been published on methods to identify microplastics [5, 10–11]. Additionally, 

research publications [12, 13] summarize knowledge gaps and future research priorities. 

Looking at the total number of research publications on microplastics over the past and 

present years clearly shows that there is a need to strengthen technical methods for identifying 

microplastics beyond sampling. 

New analytical tools need to be developed and integrated with existing instruments to 

tackle the challenges in the field of microplastic identification. The main issue to be 

addressed is the limited ability of current techniques to detect microplastics of different sizes. 

The detectable size limit of microplastics using current methods is only a few micrometers. 

However, there is a growing need to identify the presence, distribution, and polymer type of 

microplastics of various sizes, particularly in the nanoscale range. The detection and 

identification of polymers in nano-microplastics pose a significant challenge in microplastics 

research. 

Accordingly, the purpose of this article is to present and compare current advanced 

techniques that can identify microplastics in water samples, thereby gaining a more general 

overview of the advantages and disadvantages of these methods. Techniques for identifying 

microplastics. In addition, the application of infrared techniques to identify microplastics in 

surface water samples of the Saigon - Dong Nai River was researched to find polymer types 

present in reality. There is an inference about their origin. Research results are the basis for 

researchers to consider choosing appropriate methods in research. 

2. Materials and methods 

2.1. Research process and structure diagram 

The research process and structure diagram are shown in Figure 1. Figure 1 provides an 

overview of the study implementation process. We began by collecting analytical methods 

to identify microplastics and parameters from machinery and equipment manufacturers. We 

then synthesized, compared, 

and presented an overview and 

comparison of the strengths and 

limitations of each technique. 

After careful consideration, we 

chose a total attenuation Fourier 

transform infrared spectroscopy 

(ATR-FTIR) technique to study 

the polymers of microplastics in 

water samples of the river basin 

of Saigon - Dong Nai. 

2.2. Study sites, sampling and 

surveys 

The research was 

conducted at 18 locations in the 

Saigon - Dong Nai River basin 

in 2023. Of these, 13 locations 

are taken in the Saigon River 

branch from Dau Tieng lake to 

Ky Ha Rach junction (area near 

Soai Rap River) designated 

from S1 to S13 and 5 locations 
Figure 1. Flow chart outlining the process for implementing resear. 



J. Hydro-Meteorol. 2024, 19, 12-22; doi:10.36335/VNJHM.2024(19).12-22 14 

 

are in the Dong Nai River branch from Tri An lake to Dong Nai-Soai Rap River mouth with 

symbols from D1 to D5 (Figure 2). 

 

Figure 2. Sampling site. 

2.3. Sampling method 

Microplastic sampling in surface water was based on published methods of the National 

Oceanic and Atmospheric Administration [14]. The plankton net set (Neuston, 300 µm mesh) 

is attached to the Manta Trawl surface water microplastic sampling box (L×W×H = 

30×30×15 cm) and anchored to the Neuston Katamaran floating buoy. The buoy is floated 

on the water surface to collect all solid objects floating on the surface water layer (from 0 to 

15 cm) including plastic waste and other types of solids. A flow rate meter is also used to 

measure the water flow velocity at the time of sampling. Samples will be taken with a 

sampling time of approximately 30 minutes for each location. Once collected, the sample 

will be classified by hand to remove components > 5 mm in size. Then, these samples will 

be mixed together in a glass pot (washed and rinsed with 90% ethanol) to form a combined 

sample, and stored in a 2-liter glass jar with a tight lid. All water samples were transported 

to the nation lab and the southern institute of environment and circular economy (IECES) 

analysis room for analysis to identify microplastics. 

2.4. Sample preparation methods before observation and identification techniques 

To remove organic matter: 20 mL of 30 % H2O2 solution (hydrogen peroxide) and 0.05 

M FeSO4 (Fe II) solution were added to the device (beaker). The mixture was kept at room 

temperature for 5 minutes. Stir the mixture well and gently heat it on an electric stove (when 

you see air bubbles on the surface, take the cup off the stove and put it in a fume hood until 

the bubbles subside). Continue heating this mixture and adding 20 mL of 30% hydrogen 

peroxide until the reaction changes color from amber to light yellow.  
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To separate minerals and metals: Slowly add ZnCl2 solution (d = 1.6 g/mL) into the 

sample mixture, stir well, then continue to drip ZnCl2 solution into the tube to increase the 

density of the sample solution. This mixture is put into a centrifuge to completely separate 

microplastics from metals and minerals. Microplastics with low-density float to the surface 

of the ZnCl2 solution (minerals and metals with a density greater than 1.4 g/mL sink to the 

bottom of the mixture). The detected polymer types can be used as the basis for similar 

inferences about their origin (Figure 3). 

 

Figure 3. Size classification of microplastics and their relative origin. 

2.4. Data analysis method 

Calculation and statistical results are performed using Microsoft Excel Software and 

Spectrometer Technical Software. 

3. Results and discussion 

3.1. A review of analytical methods used in microplastics identification 

3.1.1. Technique for identifying microplastics using electron microscope 

Optical microscopy: Widely used to identify MPs in the > 100 μm range. Colorful 

microplastics can be easily identified using optical microscopy [15]. 

Electron Microscopy: Scanning Electron Microscopy (SEM), the sample was placed 

under a scanning electron microscope and all MPs present were counted and identified as 

flakes, pellets, fibers, films, or foams. SEM can provide very sharp, high-magnification 

images, even for very small particles, such as nanoplastics [16]; and transmission electron 

microscopes (TEM), devices that study solid-state microstructures, use magnetic lenses to 

produce magnified high-resolution images (up to millions of times), images may be produced 

on a fluorescent screen or on optical film, or recorded with a digital camera. Visual 

identification of microplastics via TEM may vary depending on the user. Additionally, the 

composition of additives such as Al, Ca, Mg, Na, and Si or antioxidants in microplastics is 

recorded [17]. Both have very high prices. 
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Gemstone microscope (polarizing microscope): it can be successfully used to identify 

polyethylene (PE). However, depending on the type of plastic, the structure of the plastic 

affects the transmission of polarized light when measuring. Therefore, this method is only 

suitable for measuring transparent microplastics [18]. 

3.1.2. Technique for identifying microplastics using thermal techniques 

Differential scanning calorimetry (DSC): It is a thermal analysis technique that can 

confirm the physical properties of plastics. Because it is easy to melt MPs, it can only be used 

to identify some main types of microplastics such as PE and PP. 

Thermogravimetric analysis (TGA): Equipment includes: a drying oven, micro-balance, 

temperature control system, and data acquisition. Confirmation of qualitative and 

quantitative information is performed by measuring the weight loss of the sample while 

heating at a specific rate under certain temperature conditions. But only polyethylene (PE) 

and polypropylene (PP) are clearly identified; polyvinyl chloride (PVC), polyethylene 

terephthalate (PET), and polyurethane (PU) are difficult to identify; polyamide (PA) and 

polyester (PES) were not identified. 

Mass Spectrometry (Py-GC/MS - Pyrolysis Gas Chromatography/Mass Spectrometry): 

The chromatographic spectrum obtained from a sample is compared with the results of a 

known plastic standard to determine whether it must be plastic or not. This method can only 

determine PS well. 

3.1.3. Microplastic identification technique using FTIR and Raman spectroscopy (Lazer)  

Determining the type of microplastics in water samples was researched and analyzed 

using Fourier transform infrared spectroscopy (FTIR). When exposed to infrared radiation, 

microplastics absorb radiation at very specific wavelengths. The visual structure of the 

laboratory Fourier transform infrared spectroscopy (FTIR) analyzer used to analyze and 

determine the polymer type of microplastics in water samples is shown in Figure 4. The FTIR 

analysis technique for samples is a three-stage process: (i) The first stage is to record the 

FTIR spectrum of a new sample of MPs to obtain a basic FTIR trace; (ii) The second stage 

is to record the same FTIR 

spectrum of the used 

microplastic sample; (iii) The 

third and final stage is to 

subtract the new microplastic 

baseline, often called the new 

reference, from the used 

microplastic spectrum to obtain 

the difference spectrum. 

Both Raman and FTIR 

spectroscopy are capable of 

identifying microplastics. 

However, Raman spectroscopy 

has three distinct advantages 

when applied. The first is 

Raman spectroscopy which uses 

sub-micron wavelength lasers as 

the light source and, as such, is 

capable of resolving particles down to 1 µm or less. FTIR microscopy uses mid-infrared light 

as its source, resulting in a wavelength range that eliminates the ability to identify particles 

below 10 µm. The second is that, unlike IR systems, Raman microscopes are built around 

research-grade white light microscopes, making it easy to observe particles; The third is the 

Figure 4. FTIR machine structure. 
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ease of sampling. There is no need to choose between transmission, reflection, and the 

required technical ATR sampling, the Raman laser system focuses on the sample, and the 

spectrum is simply obtained by collecting the scattered light. 

3.2. Identification of polymer types in surface water samples of Saigon - Dong Nai River 

using FTIR spectroscopy technique with ATR accessories 

Data collection and analysis of microplastic polymers is also automated through research 

using FTIR-ATR. Figure 5 shows the Nicolet™ iN10 MX FTIR imaging spectroscopy 

microscope system combined with ATR accessories used to analyze and identify the polymer 

types of microplastics in this study. 

 

Figure 5. Nicolet iN10 MX FTIR imaging microscope with ATR accessories: a) FTIR machine; b) 

The FTIR machine is connected to a computer system to record detected data; c) Signal processing 

and display software; d) Proceed to identify polymer types in the sample. 

Applying modern FTIR technology Nicolet iN10 MX with ATR accessories to be able 

to more accurately determine microplastic components, more effectively for small-sized 

microplastics that cannot be determined by means of visual. The resulting spectra are 

compared with spectral libraries to find the closest match and determine the chemical 

composition. A concordance of 70% or higher was considered sufficient for confirmation. 

Polymer types of microplastics in the samples were confirmed through spectral peak data 

collected when running the samples (Figure 6). 

In principle, reflection is the easiest technique because it does not require sample 

preparation or interaction between the microscope and the specimen. However, it can distort 

the spectrum, which can complicate the identification of plastic components. Therefore, 

before observing using polymer-type identification techniques, it is necessary to remove 

impurities such as minerals and perform Fentonization of the sample. 

The two main characteristics that need to be studied for microplastics are physical 

properties (size, shape, and color) and chemical properties (polymer type). Any method that 

reliably measures both is suitable for analyzing microplastics in samples. Because it is 

difficult to obtain both types of characteristics using only one analysis tool, a combination of 

methods can be applied. The minimum limit size of microplastics, as in this article, is 1mm 

– 5 mm, this is an important factor to consider when choosing identification, and qualitative 

methods. The optical microscope is an essential tool for measuring physical properties. 

(a) (b)

(c) (d)
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Optical microscopes can only classify microplastics by color, making it difficult to identify 

the polymer type like a spectroscopic microscope. However, infrared spectroscopy is 

expensive and requires a technician to operate professional training. Thermal technology 

faces many limitations and is limited in the list of polymer types and destroyed microplastic 

samples (Figure 7). 

 

Figure 6. Interface of analysis results to determine the type of microplastics in water samples using 

the FTIR Transform Infrared Spectroscopy device on the screen. 

 

Figure 7. Thermal analysis techniques: a) Pyrolysi -GC-MS analysis identifies microplastics in the 

sample; b) Diagram of differential thermal analysis [19]. 

Pyrolysis -GC-MS analysis identifies isolated plastic particles from sediment samples 

such as PE, PP, PVC, PS, PA, PET, and chlorinated or chlorosulfonated PE. Thermal analysis 

provides an alternative to spectroscopy for the chemical determination of certain polymers. 

However, thermal analysis is a destructive method, which prevents further additional analysis 

of the sample. For large-sized microplastics that can be manipulated by hand (picking, 

counting...), magnifying microscopes and optical microscopes can be used because they will 

analyze the physical properties themselves along with a few additional tests (e.g. needle 

puncture) to determine the polymer type only relatively, lacking reliability. But if the size of 

the microplastic is < 1 mm and the minimum limit size is tens of micrometers, it is necessary 

to combine it with chemical analysis such as spectroscopy or thermal techniques to easily 

identify them according to the library of the system. Regarding convenience in processing, 

analysis time, and an abundant number of polymer types, choosing the μ-ATR-FTIR 

spectroscopy technique is the most optimal, especially for environmental samples.  

If the minimum size is limited to a few micrometers, Raman (Lazer) spectroscopy should 

be a reliable technique for obtaining better spectra from particles < 20 μm in size. Although 

the μ-ATR-FTIR and Raman techniques are both very optimal, microplastics with too small 

(a) (b)
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sizes can still be missed or information lost in complex environmental samples with many 

impurities such as colorants, glues, catalysts, labels..., even for many unknown types of 

polymers such as weathering polymers. These methods are not recommended for routine 

monitoring studies today because they are very expensive, the equipment storage and 

preservation environment needs to ensure limited indexes of room temperature and humidity. 

Dust-proof, and above all, it requires a skilled technician to operate it. FTIR and Raman 

spectroscopy are powerful analytical tools for identifying microplastics in aquatic 

environments. There are many solutions, from simple point-and-shoot devices to complex 

imaging systems. The choice of system depends on the size of the particles being studied, on 

which the analysis to be performed is performed and the level of automation required. This 

information is summarized in Table 1. 

Table 1. Information about infrared spectrum analyzers. 

  
FTIR + 

ATR 

FTIR + Smart 

Spot ATR 

Point-and-

Shoot 

FTIR 

FTIR + 

Imaging + 

ATR 

Raman 

microscope 

(Lazer) 

Microplastic 

size 

5 mm ✓     

1 mm ✓     

500 μm ✓ ✓    

100 μm  ✓ ✓ ✓  

10 μm  ✓ ✓ ✓ ✓ 

1 μm     ✓ 

Just set the template 

manually 
✓ ✓ ✓   

Automated analysis    ✓ ✓ 

Not affected by sample 

fluorescence 
✓ ✓ ✓ ✓  

Relative cost Low Medium Medium Hight Very Hight 

Data collection and analysis can be automated through the use of a microscope equipped 

with a motorized stage and associated software. Automatic analysis of this image using 

software can generate information about the identity, number, and size of each individual 

microplastic. The first result, though, is that images can contain large amounts of redundant 

data. There may be only a small percentage of the image data set that contains information 

about particles, the rest is filtered. The approach chosen is situational dependent on: i) How 

many particles are analyzed?; ii) In stock?; iii) In what area? Therefore, these advanced 

techniques prioritize identification and detection research and are limited in quantitative 

research, determining the density, color, and size of microplastics. 

3.3. Polymer types detected in surface water samples of the Saigon - Dong Nai River using 

the FTIR-ATR method 

As a result of FTIR transform infrared spectroscopy analysis, the study discovered more 

than 60 polymer types from microplastics found in surface water samples of the Saigon - 

Dong Nai river. This result is shown in Figure 8. Polymer types found in the samples 

according to chemical origin: VINYL-based plastic accounts for 3.29%; ETHYLENE-based 

plastic accounts for 40.8%; MUF synthetic glue-based resin accounts for 0.16%; TEFLON 

plastic (PTEF) accounts for 7.06%; PROPYLENE plastic accounts for 10.3%; OLEFIN 

synthetic resin (HIDROCACBON) accounts for 1.37%; AMINO synthetic resin accounts for 

1.22%; STYRENE plastic accounts for 1.52%; NYLON accounts for 42.14%; The remaining 

3.86% is other types of polymers. 

The findings highlight how microplastics are already present in the water of these two 

tributaries from a range of plastic products such as packaging, nets, and single-use products 

such as straws and masks. The density of PE, PP, and PVC is very small, from 0.90 to 0.95 

g.cm-3 [20]. 
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Figure 8. Polymer types detected in surface water samples of two branches of the Saigon and Dong Nai rivers. 

They can float on the surface of river water, where the particles are then deposited on 

the sediment layer. Initial results of the study have identified microplastics present in the 

water environment. At the same time, the percentage of polymer-type radicals detected also 

represents a relative relationship from product to microplastic. Specifically, the NYLON 

plastic base belongs to the Polyamide industrial plastic group (PA plastic), with soft, smooth 

but waterproof properties, can withstand weather phenomena, and can resist natural 

influences such as mold or mildew insects, NYLON often produces artificial fiber products, 

doormats, tablecloths, raincoats, garbage bags, gloves, food wraps, and kitchen utensils,... 

these products have a high potential to decompose into fibrous and fragmented microplastics. 

In addition, PROPYLENE-based plastic is a hard, tough, and crystalline polymer 

thermoplastic produced from propene monomer (or propylene), often used to produce bottle 

caps, jars, and rice barrels, etc. that are difficult to decompose. If exposed to physical impacts 

and light environments that make them brittle and broken, they will mostly create 

microplastics in the form of hard pieces or granules. Similarly, ETHYLENE-based plastic is 

a flexible material that belongs to the polyolefin plastic group and plays an extremely 

important role in the plastic industry, producing many products for daily use such as food 

wrap, plastic straws, zip bags..., easily break and melt under sunlight and heat. 

4. Conclusion 

Different combinations of microplastic analysis methods will help identify microplastics 

in different complex environmental matrices. The need to identify microplastics from 

research projects are increasing, in many different environments such as water, air, and food 

to assess the risks and impacts of microplastics on natural ecosystems and human health, 

existing identification techniques need to be properly selected to reduce implementation time 

and effort. Although the optical microscope technique is simple, despite its low cost, it cannot 

identify microplastics. If the thermal technique is applied, it is limited because the polymer-

type library is quite poor. After samples are analyzed using this technique, further 

experiments cannot be carried out because the microplastic sample is almost destroyed. 

Completely canceled and the price was also very expensive. By far the most popular 

spectroscopic technique for the analysis of plastics is total attenuation Fourier transform 

infrared spectroscopy (ATR-FTIR), a technique for the analysis of liquids. For samples 

smaller than 1mm, the ATR accessory can provide viewing and magnification capabilities, 

facilitating analysis of samples in the 1mm to 70 µm range. When the particle size drops 

below 100 µm, magnification is required.  

There are two options, infrared microscopy and Raman microscopy (both are techniques 

also known as spectroscopic microscopy). For particles smaller than 10 µm, Raman is the 

preferred choice. Both FTIR and Raman are modern techniques but they are very expensive. 

In addition, the study has shown results on the presence of a variety of polymer types in the 

surface water of the two rivers Saigon and Dong Nai. FTIR imaging microscopy techniques 
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combined with ATR accessories, specifically the Nicolet™ iN10 MX FTIR imaging 

spectroscopy microscope, more than 60 polymer types were detected. In particular, the 

highest is NYLON origin accounting for 42.14%, and ETHYLENE origin accounting for 

40.8%. These are the two main sources in the production of packaging products, artificial 

fibers, raincoats, garbage bags, gloves, food wrap, kitchen utensils, and straws... these are 

flexible plastics, soft and smooth, easily disintegrate when exposed to rain, wind and heat 

from the environment, especially sunlight. Therefore, this issue should also be considered 

when research on microplastics is carried out. When performing identification, in order not 

to confuse polymer types with similar materials, it is also necessary to pay attention to those 

features to distinguish them. In addition, research should continue to identify and isolate 

microplastics from environmental samples through the introduction development and 

updating of new polymer types into the library spectrum, which is a major limitation because 

it requires coordination. Coordinate with manufacturers and update software systems. 
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Abstract: China not only serves as a significant trading partner for agricultural products 

with Vietnam but also holds a strategic position as an upstream neighbor in Vietnam's major 

river basins, thereby influencing the nation’s water security. This research initially examines 

the Vietnam-China relationship through the lens of virtual water trade in agricultural goods, 

analyzing the period from 2010 to 2021. Findings reveal Vietnam’s status as a virtual water 

deficit country vis-à-vis China, a trend that has been progressively worsening. Vietnam 

acted as a virtual water exporter during this period, exporting around 98 billion m3 to China 

while importing 10.96 billion m3. Both nations share similarities in virtual water structure 

due to similar climatic conditions and technical advancement levels. In terms of product 

structure, Vietnam emerges as a strategic partner, predominantly supplying China with 

agricultural products derived from plants. However, this structure lacks balance and is 

primarily centered around a select few products such as soybean oil (constituting 20.77% 

of virtual water imports) and manioc starch (constituting 33.48% of virtual water exports). 

The virtual water trade between Vietnam and China reflects a negative net import, with both 

countries possessing renewable internal water freshwater resources per capita lower than 

the global average. While Vietnam currently supports China in addressing water scarcity 

challenges, diversifying export markets and optimizing the import-export framework with 

China can enhance Vietnam’s resilience and contribute to long-term water sustainability. 

Consequently, prioritizing policies aligned with the virtual water perspective will empower 

Vietnam to effectively manage water scarcity, ensuring its future sustainability. 

Keywords: Virtual Water Trade; Agriculture Products; Vietnam and China; Virtual Water 

Defcit. 
 

1. Introduction 

Vietnam is a country with a high average rainfall of 1000-4000 mm (2020) [1] and a 

dense river system with over 2,360 rivers having more than 10 km in length [2]. However, 

two-thirds of Vietnam's total water resources originate from abroad. If only considering 

renewable internal water resources, the amount of annual available water will be about 3,719 

m3 per capita in 2020, lower than the world average (5,500 m3 per capita) [3]. Moreover, 

Vietnam is situated in a susceptible region positioned downstream of major transnational 

rivers, which are significantly impacted by upstream nations like Laos and China. Presently, 

there is a notable increase in the construction of large-scale hydroelectric dams upstream of 

the Mekong River, resulting in alterations to seasonal flows downstream. This phenomenon 

impacts the sediment load, triggers floods, and disrupts agricultural and fishery practices [4]. 

In Vietnam, the study computed the aggregate volume of virtual water expended on four 
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primary crops-rice, corn, coffee, and sugarcane illustrating that reliance solely on domestic 

water reservoirs would lead to severe water scarcity in regions such as the Red River Delta 

and the South Central Coast [5]. Consequently, prioritizing the regulation of water resources 

for Vietnam through inter-country policies to uphold water security emerges as a paramount 

task. Efforts to mitigate strain on potable water sources have been investigated and put into 

practical application. Since the 1980s, the notion of “Virtual Water”, as introduced by the 

study [6] has been advocated to quantify the water consumption associated with various 

goods or food items, necessitating thorough investigation. This approach is regarded as a 

sustainable method for assessing a nation’s water usage concerning goods and food items, 

thereby offering a clearer and more comprehensive understanding of water resource 

utilization issues. Addressing scarcity can be facilitated by importing commodities with 

substantial virtual water content from countries endowed with relatively abundant water 

resources, thus alleviating strain on local river basins [7]. 

The trade relationship between Vietnam and China has developed dramatically in the 

period 2010-2020 [8]. Subsequently, the trade dynamics and commerce between the two 

nations have fostered a robust relationship, establishing a connection between goods and 

food. China emerges as a crucial partner in the import-export domain for agricultural 

commodities, benefiting from Vietnam’s geographical proximity, which facilitates reduced 

transit time and transportation expenses for agricultural products. Leveraging the ASEAN-

China Free Trade Agreement (2002), Vietnam has secured tariff reductions for over 8,000 

export items, encompassing agricultural products [9]. Hence, based on data from the General 

Statistics Office, China stands as Vietnam's primary trading partner, leading in both imports 

and exports. From 2010 to 2020, Vietnam's trade with China escalated from 17.8% to 24.4%, 

with indications suggesting a potential continuation of this upward trend [10]. Additionally, 

as per previous research in the period 2001-2014, Vietnam emerged as the leading provider 

of virtual water to China among nations engaged in the Trans-Pacific Partnership Agreement, 

including the US, through its exports about 2.72 billion m3/year, while simultaneously 

ranking as the second-largest importer of such products from China within this group, 

accounting for 1.29 billion m3 per year  [11]. This indicates that Vietnam experiences a virtual 

water deficit in its trade dealings with China. Coupled with Vietnam's reliance on upstream 

countries for river basins as aforementioned, investigating the virtual water trade between 

Vietnam and China becomes an urgent priority. Previous reports on virtual water trade had 

also been carried out by many countries such as Malaysia [12], Spain [13], and the Nile basin 

[14] to manage water security for countries. Moreover, this represents a new research avenue 

that has not yet been explored in Vietnam. 

The main purpose of the study is to clarify the virtual water trade relationship between 

China and Vietnam in the period from 2010 to 2021 by examining the specific water footprint 

of agricultural trade products derived from plants and animals for agricultural products which 

is the largest freshwater consumption in the world, accounting for about 70-95% [15]. The 

study seeks to provide an in-depth analysis of the China-Vietnam relationship through the 

lens of virtual water trade. Additionally, it will utilize the virtual water footprint of various 

product types to meticulously calculate and present data, shedding light on the trade dynamics 

between the two nations in terms of product composition and water footprint makeup, with a 

focus on water sustainability. Following the introduction, section 2 will outline the research 

methodology, section 3 will present the results and discussion, and section 4 will conclude 

the study. 

2. Materials and Methods 

2.1. Method of research 

2.1.1. Virtual water calculation for agricultural products 
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Virtual water, also known as “embedded water” or “indirect water”, refers to the water 

that is concealed within the products, services, and processes consumed daily by individuals. 

Despite remaining unseen by the end-user, this water is expended throughout the entire value 

chain, enabling the creation of the respective product or service. Virtual water and water 

footprint both concern the water consumption in manufacturing, but the concept of water 

footprint has broader applications. While virtual water accounts for all water used in a 

product's production, the water footprint (WF) is the volume of water required to produce an 

agricultural product which is calculated as three components of water: green water footprint, 

blue water footprint, and grey water footprint. Additionally, we can evaluate whether a 

product’s water footprint aligns with local water resources and ecological conditions. The 

green water footprint pertains to the rainwater utilized during the production of an item, the 

blue water footprint relates to the surface and groundwater utilized (through evaporation). 

Additionally, the grey water footprint signifies water pollution, representing the volume of 

freshwater needed to absorb pollutants based on prevailing ambient water quality standards 

[5]. 

The virtual water amount for each crop is calculated based on the specific water needs 

of the crop and each country with the productivity of that crop [16]. The virtual water content 

of animal products is calculated based on the following factors: Virtual water content from 

consumed food, virtual water content from drinking water, and virtual water content from 

service water [17]. 

The amount of imported and exported virtual water will be calculated based on the water 

footprint of that product and that country's agricultural product trade as below: 

                                                       VWF = CT × WF            (1)                       

VWF (Virtual water flows) is the amount of virtual water calculated for products from 

the exporting country to the importing country or vice versa (m3/year), CT (The agriculture 

product trade) is the import or export volume of product (kg/year), WF (water footprint) is 

the water footprint of that product (m3/kg) [11]. 

In determining virtual water trade between Vietnam and China, essential data includes 

import/export quantities and the water footprint associated with each product. The water 

footprint of a single product varies across different countries. Therefore, to assess products 

exported from Vietnam, the study uses the datda of export quantity and water footprint of the 

Vietnam’s product, while the data of import quatity and water footprint of China is used for 

the imported products. The virtual water trade volume comprises the green water footprint, 

blue water footprint, and grey water footprint of the product. 

2.1.2. Virtual water surplus and deficit 

The concept of “Virtual Water” by [6] is a means to optimize water use through the 

import and export of virtual water between nations. Virtual water trade enables water-scarce 

countries to manage water consumption by importing water-intensive products, effectively 

transporting the water embedded in goods to alleviate scarcity pressure [18]. Conversely, 

nations abundant in water resources can capitalize on the resources they export [19]. Hence, 

exporting a product with substantial water usage to another nation constitutes exporting 

virtual water [16]. 

The trajectory of a nation's foreign trade can be delineated by its trade surplus and deficit. 

In international trade, a surplus occurs when a country’s exports surpass its imports within a 

defined period, whereas a deficit indicates the opposite scenario, thereby reflecting the 

international balance of payments. Conversely, the computation of virtual water contrasts 

with the principles of the international balance of payments. A surplus in virtual water trade 

occurs when a country’s total imported virtual water surpasses its exported volume, and 

conversely for a deficit. This delineates the equilibrium of water resources. By employing 

this methodology, we have acquired data on imported and exported virtual water flows 
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between Vietnam and China. If Vietnam's total imported virtual water from China exceeds 

its exported volume, Vietnam operates under a virtual water trade surplus, and vice versa for 

a deficit. This approach also facilitates an understanding of the virtual water trade status of 

individual nations [20]. 

2.1.3. The assessment indicator of trade partners 

This analysis was conducted using two factors. The initial factor, net import, assesses 

the difference between virtual water imports and exports, indicating either surplus or deficit. 

The second factor, water abundance, compares each country's renewable internal freshwater 

resources per capita (measured in cubic meters) with the global average, revealing either 

abundance or scarcity. If a country’s renewable internal freshwater resources per capita 

surpass the global average in a given year, it is considered abundant in water; conversely, it 

is deemed to face water scarcity. Renewable internal freshwater resource flows encompass 

the internal renewable resources within a country, such as internal river flows and 

groundwater replenished by rainfall. Through the application of these two factors, it becomes 

feasible to evaluate the dynamics of virtual water management between Vietnam and China.  

2.2. Data 

2.2.1. Data on import and export of products agriculture 

Data on agricultural products exchanged between the two nations are drawn in the period 

from 2010 to 2021. The year 2010 marks the end of the 10-year socio-economic development 

strategy from 2001 to 2010, serving as a stary year for subsequent 10-year socio-economic 

development strategies as per Vietnam’s planning [21]. Moreover, the HS code systems have 

changed since 2021. Therefore, the research has conducted a thorough investigation, 

providing further insights into the trade dynamics between Vietnam and China, particularly 

focusing on virtual water trade during the period 2010-2021. Data pertaining to agricultural 

trade has been meticulously researched and compiled by the International Trade Center (ITC) 

[22]. ITC provides international trade data by product and country including 99 product 

groups, this study will focus on agricultural product groups. The data from the ITC are 

estimated by the United Nations Statistics Unit (UNSD). 

2.2.2. Data on the product’s water footprint 

The calculation will utilize trade data encompassing 339 plant products and 124 animal 

products. Each product will be assessed based on its green water, blue water, and grey water 

footprint. These footprint metrics are documented in Mekonnen and Hoekstra’s Water Value 

Research Series No.47 and No. 48, published by the Institute for Water Education 

(UNESCO-IHE) [23, 24]. Specifically, green and blue water footprint data were computed 

utilizing the CROPWAT 8.0 model developed by the Food and Agriculture Organization of 

the United Nations (FAO). However, water footprint data for 126 crops were sourced from 

MICRA2000 due to the classification dependency on whether the crop is perennial or annual 

[23, 25]. The grey water factor is determined by the nitrogen fertilizer application and the 

actual crop yield. Report numbers 47 and 48 employ the 6-digit HS product code for 

reference; hence, this same code is utilized to retrieve the product quantity data from the 

International Trade Center (ITC). 

2.2.3. Limitations 

During the implementation of the study, certain limitations pertaining to data were 

identified. Specifically, some products changed their HS codes (Harmonized System codes) 

by the World Customs Organization (WCO) on a 5-year cycle. Consequently, numerous 
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codes became obsolete while new codes were introduced. For instance, the cotton seeds 

product with code 120720 was replaced by two separate products: Cotton seeds for sowing 

and cotton seeds, each assigned with distinct codes 120721 and 120729, respectively, in 2007 

[22]. Therefore, the study presumed that new codes derived from the same old code would 

retain the same water footprint and maintain identical characteristics to the previous product 

code. Furthermore, the study assumes uniformity in the amount of water utilized for 

irrigation, planting schedules, and crop harvests at the national level, without considering 

regional disparities within a country. Another limitation lies in the calculation of the grey 

water footprint, which is based on nitrogen in fertilizers, with natural nitrogen concentrations 

assumed to be zero. Due to the unavailability of net fertilization rates, it was assumed that 

crops received an equal amount of nitrogen fertilizer per hectare planted across all grid cells 

within a country, with an average assumed leaching rate of 10% for fertilizers [23]. 

Additionally, Report 48 lacks virtual water data pertaining to agricultural products 

derived from aquatic sources, hence data on this product category was not included in the 

study. However, seafood represents a significant aspect of Vietnam's import and export 

activities, prompting consideration for future research on this matter. Furthermore, the study 

assumes that products are manufactured within their respective countries, and thus utilizes 

the water footprint of the corresponding country for each product [26]. 

Despite some limitations encountered in this study, it has successfully estimated the 

volume of virtual water exchanged between the two countries, aligning with the project's 

objectives. Moving forward, these identified limitations serve as valuable research avenues 

that the research team intends to explore in the future.  

3. Results and discussion  

3.1. Balance of virtual water trade between Vietnam and China 

Figure 1.a shows that Vietnam is a virtual water exporter, with the amount of virtual 

water exported to China reaching 98 billion m3, and imports from China reaching 10.96 

billion m3 during the entire period 2010-2021. The level of virtual water deficit is increasing 

rapidly in the period from 1.27 billion m3/year  in 2010 to 9.45 billion m3/year in 2021 by 7.4 

times [22]. The virtual water trade of agricultural products between Vietnam and China has 

exhibited a notable upward trend over the years, although a substantial disparity exists 

between exports and imports. From 2010 to 2013, there was a rapid increase in the volume 

of virtual water exported from Vietnam to China, followed by a stabilization period from 

2014 to 2017, and then another increase from 2019 to 2021. Conversely, the amount of virtual 

water imported from agricultural products remained relatively stable throughout the period 

from 2010 to 2021. For instance, in 2010, the volume of virtual water imports was 

approximately 0.65 billion m3/year, while the export volume was about 1.93 billion m3. Thus 

by 2021, the disparity between virtual water imports and exports became more pronounced, 

with Vietnam importing approximately 1.19 billion m3 and exporting about 10.65 billion m3. 

This indicates a significant increase, approximately 8.9 times higher than the combined 

import and export volume in 2010. Particularly in 2018, the repercussions of the trade 

tensions between China and the US led to a general inclination among several nations, 

including China, to curtail imports of goods wherein Vietnam possessed a competitive edge. 

The 2018 Vietnam Trade Report underscores this trend, revealing a notable decline in 

trade volume between the two countries for various commodities. Notably, there was a 

decrease in the import of rice (amounting to 638.3 million USD, a decrease of 33.4%) and 

natural rubber (1.37 billion USD, down by 5%) compared to the figures recorded in 2017 

[27]. These agricultural products, which possess a substantial water footprint and constitute 

a significant portion of the trade volume, consequently experienced a sharp decline in virtual 

water exports in 2018. For instance, the export of cassava and cassava products totaled 2.15 
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million tons, marking a decline of  7.3% compared to 2017, with a high water footprint [23, 

27]. Hence, the disparity in the quantity of virtual water exports between 2017 and 2018 

amounted to approximately 2.57 billion m3. 
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Figure 1. (a) The virtual water trade in agricultural products between Vietnam and China; (b) The 

virtual water trade in agricultural products derived from plants between Vietnam and China; (c) The 

virtual water trade in products derived from animals between Vietnam and China. 

Vietnam excels in exporting agricultural products derived from plants, hence 

contributing significantly to the substantial virtual water volume (Figure 1b), exemplified by 

commodities such as “manioc starch” (32 billion m3), “natural rubber latex, whether or not 

prevulcanised” (7.39 billion m3), “fresh tamarinds, cashew apples, jackfruit, lychees, 

sapodilla plums, passion fruit, carambola, …” (4.05 billion m3). The virtual water trade in 

animal products between Vietnam and China constitutes a notably smaller proportion 

compared to plant-based agricultural products. The volume of virtual water imported from 

plant-based agricultural products stands at 7.2 billion m3, whereas that from animal products 

is 3.3 billion m3, marking a 2.18 times difference (Figures 1b, 1c). Nonetheless, during the 

period from 2010 to 2021, the total virtual water imported from animal-based agricultural 

products also doubled from approximately 0.6 billion m3 to 1.2 billion m3. This underscores 

the trade relationship’s heavy reliance on the exchange of plant-based agricultural products. 

Two primary factors contribute to the virtual water deficit in the Vietnam-China trade 

relationship. Firstly, Vietnam boasts a dominant position in exporting key commodities such 

as rice and cassava. Secondly, China’s rapid economic growth has spurred urbanization, 

triggering population pressures and exacerbating land scarcity for cultivation [11]. 

3.2. Analysis of the component structure of virtual water trade 

The virtual water trade relies on the exchange of three water components: green water, 

blue water, and grey water. Analyzing the trade involving these water components assists 

Vietnam in managing water resources effectively, mitigating water deficits in regions facing 

water scarcity. The general trend showed an increase of virtual water trade in both import 

and export between Vietnam and China over the years from 2010 to 2021 (Figures 2a1, a2, 
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b1, b2), especially a high volume of green water. However, net imports showed a deep 

downward trend during the study period (Figures 2a3, b3, c3). Beginning at approximately -

1.27 billion m3 of green water in 2010, the exchange of virtual water between Vietnam and 

China saw a notable increase, reaching about -9.45 billion m3 by 2021, with a contribution 

of 8.8 billion m3 from green water. From 2010 to 2021, Vietnam’s imported virtual water 

structure consisted of 81.2% green water,6.4% blue water, and 12.4% grey water. 

Conversely, Vietnam’s exported virtual water from China comprised 86.9% green water, 

4.4% blue water, and 8.7% grey water. In the virtual water trade between Vietnam and China, 

green water, primarily sourced from rainfall, predominates in agricultural production. Given 

Vietnam’s location in the tropical monsoon region with abundant rainfall ranging from 1000 

to 4000 mm annually in 2020, rainwater serves as the primary source for irrigation [1]. 
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Figure 2. Virtual water structure of imports of all agricultural products (a1), plant-derived agricultural 

products (b1), and animal-derived agricultural products (c1); Virtual water structure of exports of all 

agricultural products (a2), and animal-derived agricultural products (b2), and animal-derived 

agricultural products (c2); Virtual water structure of net imports of all agricultural products (a3), plant-

derived agricultural products (b3), and animal-derived agricultural products (c3). 

It is clear that the green virtualwater was the highest, and still trend increased in the 

period 2010-2021.There was a significant decrease in 2012 (Figures 2a1, 2b1) due to a lack 

of data recorded in the ITC [22]. The total import of virtual green water reached a peak at 

around 1.15 billion m3 in 2016 (Figure 2a1). While the total export of virtual green water in 

2016 is about 8.7 billion m3 (Figure 2a2) including from plant products around 8.1 billion m3 

(Figure 2b2), and the virtual green water of animal products about is 0.6 billion m3 (Figure 

2b3). The difference can be explained by Vietnam’s advantage in exporting agricultural 

products especially products derived from plants (Figure 1) and higher green water footprint 

products of Vietnam than that of China (Table 2). As for virtual water trade in agricultural 

products sourced from animals, the proportion of green countries accounts for more than the 

remaining countries. It can be explained due to the high water footpring such as leather “incl. 

parchment-dressed leather” of  the whole hides and skins of bovine “incl.buffalo”... (HS code 
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410799) has a blue water footprint of 27,203 m3/ton, 64 times higher than a green water 

footprint of 426 m3/ton and 136 times higher than a grey water footprint of 200 m3/ton [24]. 

The grey water footprint of agricultural and livestock products is reflected in the grey water 

footprint of crops in animal feed [23, 24]. Similar to animals products, the majority of the 

water footprint of plant products is also attributed to green water, for example “natural rubber 

latex, whether or not prevulcanised” (HS code 400110) of Vietnam has a green water 

footprint of 14,776 m3/ton, 92 times higher than a blue water footprint of 160 m3/ton and 23 

times than a grey water footprint of 631 m3/ton [23]. Furthermore, China encompasses four 

primary climate zones-desert, polar, continental, and warm temperate [12], resulting in an 

average rainfall in 2020 of approximately 694.8 mm lower than that of Vietnam. 

Consequently, China's green water volume is lower than that of Vietnam [28]. 

The disparity in grey water import and export volumes between China and Vietnam 

appears relatively minimal, suggesting a similar level of agricultural science and technology 

between the two nations. Generally, it can be seen that grey virtual water significantly 

increased both import and export in the period 2010-2021. The large difference in the amount 

of grey water embedded in the goods traded between China and Vietnam points to the 

difference in agricultural development levels between the two countries. In 2010, the total 

grey water import was approximately 0.09 billion m3 and increased dramatically to 0.15 

billion m3 in 2021. While the total grey water export from Vietnam was about 0.08 billion 

m3 in 2010, peaked at 1 billion m3 in 2015, approximately 0.8 billion m3 in 2021. Vietnam 

exhibits a slightly higher grey water footprint, indicating a greater loss of nitrogen fertilizer 

compared to Vietnam (Figures 2b1, 2b2). 

Table 1. List of 10 agricultural products with the highest export/import virtual water flow between 

Vietnam and China in the period 2010-2021. 

No 

Import Export 

HS 

Code 
Product 

Virtual 

water 

(Billion m3) 

Percent HS Code Product 

Virtual 

water 

(Billion m3) 

Percent 

1 240110 
Tobacco, unstemmed or 

unstripped 
0.2 1.87% 071410 

Fresh, chilled, frozen 

or dried roots and 

tubers of manioc 

“cassava”, whether or 

not sliced, etc. 

1.8 1.83% 

2 410419 

Hides and skins of 

bovine “incl. Buffalo” or 

equine animals, in the 

wet state “incl. wet-

blue”, etc. 

0.26 2.42% 520299 

Cotton waste (excl. 

yarn waste, thread 

waste and garnetted 

stock) 

1.88 1.92% 

3 170260 

Fructose in solid form 

and fructose syrup, not 

containing added 

flavoring or coloring 

matter, etc. 

0.27 2.46% 090111 
Coffee (excl. roasted 

and decaffeinated) 
1.95 2.00% 

4 051199 

Products of animal 

origin, n.e.s., dead 

animals, unfit for human 

consumption (excl. fish, 

crustaceans, etc.) 

0.34 3.12% 170199 

Cane or beet sugar 

and chemically pure 

sucrose, in solid form 

(excl. cane and beet 

sugar containing, etc. 

2.22 2.26% 

5 110900 
Wheat gluten, whether or 

not dried 
0.36 3.29% 410419 

Hides and skins of 

bovine “incl. buffalo” 

or equine animals, in 

the wet state “incl. 

wet-blue”, etc. 

2.92 2.98% 

6 100610 
Rice in the husk, 

“paddy” or rough 
0.37 3.42% 081090 

Fresh tamarinds, 

cashew apples, 

jackfruit, lychees, 

sapodilla plums, 

passion fruit, 

carambola, etc. 

4.05 4.13% 
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The proportion of the blue water footprint remains relatively small in both imports and 

exports of animal and plant products. Specifically, in 2010, the volume of agricultural 

products derived from plants exported with blue water was approximately 0.36 billion m3 

less than the volume of imported products, which contained around 0.46 billion m3 of blue 

water. Additionally, animals imported accounted for approximately 0.13 billion m3 of blue 

water, whereas the exported volume was around 0.07 billion m3. The variation between 

animals and plants arises from the greater number of plant products, totaling 372, compared 

to animal products, which amount to 124. 

Overall, there is not a substantial variation in the proportion of virtual water components 

over the years. Green water comprises the biggest share, followed by grey water and blue 

water. Consequently, the percentage breakdown of virtual water import and export for 

agricultural products between Vietnam and China remains relatively constant. 

3.3. Analysis of product structure 

During the study period spanning from 2010 to 2021, Vietnam imported approximately 

0.05 billion tons of goods from China, while exporting around 0.43 billion tons of agricultural 

products [21]. This is equivalent to 10.6 billion m3 of virtual water imported and 97.9 billion 

m3 of virtual water exported from Vietnam to the Chinese market. 

Vietnam mainly imports agricultural products derived from plants, such as “oilcake and 

other solid residues, whether or not ground or in the form of pellets, resulting”, which 

accounts for the largest proportion of virtual water at approximately 2.28 billion m3, 

constituting 20.77% of the total virtual water import (Table 1). Following “oilcake and other 

solid residues, whether or not ground or in the form of pellets, resulting” are “maple sugar, 

in solid form, and maple syrup (excl. flavored or colored)”, “malt (excl. roasted)”, and “rice 

in the husk, “paddy or rough”, accounting for 6.96%, 3.78%, and 3.42% of the total 

respectively [23]. Furthermore, the animal product with the highest virtual water proportion 

in imports is leather “incl. parchment-dressed leather” of the portions, strips or sheets of hides 

and skins ...” (HS code 410799), amounting to 19.69%, equivalent to 2.16 billion m3, owing 

to its high water footprint of 18,628 m3/ton [24]. 

Table 2. Variations in the virtual water footprint of individual products between Vietnam and China. 

No. HS code Product  
China (m3/ ton) Vietnam (m3/ ton) 

Green Blue Grey Green Blue Grey 

1 230400 

Oilcake and other solid 

residues, whether or not 

ground or in the form of 

pellets, resulting 

2,114 207 181 2,355 0 308 

No 

Import Export 

HS 

Code 
Product 

Virtual 

water 

(Billion m3) 

Percent HS Code Product 

Virtual 

water 

(Billion m3) 

Percent 

7 110710 Malt (excl. roasted) 0.41 3.78% 100640 Broken Rice 5.21 5.31% 

8 170220 

Maple sugar, in solid 

form, and maple syrup 

(excl. flavored or 

colored) 

0.76 6.96% 400110 

Natural rubber latex, 

whether or not 

prevulcanised 

7.39 7.54% 

9 410799 

Leather “incl. 

parchment-dressed 

leather” of the portions, 

strips or sheets of hides 

and skins, etc. 

2.16 19.69% 100630 

Semi-milled or 

wholly milled rice, 

whether or not 

polished or glazed 

27.06 27.61% 

10 230400 

Oilcake and other solid 

residues, whether or not 

ground or in the form of 

pellets, resulting, etc. 

2.28 20.77% 110814 Manioc starch 32.81 33.48% 
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No. HS code Product  
China (m3/ ton) Vietnam (m3/ ton) 

Green Blue Grey Green Blue Grey 

2 170220 

Maple sugar, in solid 

form, and maple syrup 

(excl. flavoured or 

colored) 

1,436 54 261 1,853 288 220 

3 110710 Malt (excl. roasted) 761 39 194 0 0 0 

4 100610 
Rice in the husk, “paddy” 

or rough 
549 246 215 1,026 161 205 

5 51199 

Products of animal origin, 

n.e.s., dead animals, unfit 

for human consumption 

(excl. fish, crustaceans, 

etc. 

80,777 1,412 2,324 87,892 2,092 1,311 

6 110814 Manioc starch 1,325 0 293 2,256 0 162 

7 100630 

Semi-milled or wholly 

milled rice, whether or not 

polished or glazed 

792 355 310 1,480 232 295 

8 400110 

Natural rubber latex, 

whether or not 

prevulcanised 

5,971 359 1,016 14,776 160 631 

9 100640 Broken rice 820 367 321 1,531 240 306 

10 81090 

Fresh tamarinds, cashew 

apples, jackfruit, lychees, 

sapodilla plums, passion 

fruit, carambola, etc. 

2,860 90 999 920 0 24 

Vietnam’s forte lies in exporting plant-derived agricultural products to China, including 

cassava, rice, rubber, coffee, and fresh fruits. Among these, manioc starch products contribute 

significantly to the virtual water exported to China, representing 32.8 billion m3 or 33.48% 

of the total exported virtual water volume. This prominence is attributed to Vietnam's 

substantial cassava exports to the Chinese market, with an export volume of approximately 

2.26 million tons in 2019 [29] coupled with its substantial water footprint of 2,418 m3/ton 

[23]. Additionally, other agricultural products also hold a considerable share, such as “semi-

milled or wholly milled rice, whether or not polished or glazed”, “natural rubber latex, 

whether or not prevulcanised”, and “fresh tamarinds, cashew apples, jackfruit, lychees, 

sapodillo plums, passion fruit, carambola, etc.”, accounting for 27.61%, 7.54%, and 4.13%, 

respectively. As for animal-derived agricultural products, wet hides of buffaloes, cows, or 

horses dominate the export proportion at about 2.98%, with a water footprint of 18,181 

m3/ton.  

It is clearly seen from Table 2 that the water footprint of the same product varies between. 

For instance, for “manioc starch”, Vietnam’s green, blue, and grey water footprints are 2,256; 

0; 162 (m3/ton), whereas China’s green, blue, and grey water footprints are 1,325; 0; 293 

(m3/ton). This disparity stems from differences in national productivity, crop varieties, and 

local climate, as well as varying agricultural practices between Vietnam and China [23, 24]. 

Henceforth, Vietnam must contemplate the importation of products characterized by high 

water footprints while restricting the export of items with substantial water footprints. This 

strategic approach will ultimately aid Vietnam in alleviating freshwater strain in local regions 

and guaranteeing water security through prudent product utilization. 

The water footprint of animals typically exceeds that of plants due to three key factors: 

food conversion efficiency, feed composition, and food origin. Higher food conversion 

efficiency results in less food required for the animal and reduced water wastage during feed 

production. Feed composition is primarily determined by the types of plants used as animal 

feed, with the ratio of grain to soybean meal being a key consideration for chickens and pigs. 

Moreover, the origin of animal feed varies among countries due to regional climate 

conditions and agricultural practices [22]. As an illustration, consider the export of “hides 

and skins of bovine “incl. buffalo” or equine animals, in the wet state “incl. wet-blue” (HS 
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code 410419), which amounts to a total volume of 0.02 million tons, equivalent to 0.26 billion 

m3. In contrast, the export volume of “fructose in solid form and fructose syrup, not 

containing added flavoring or coloring matter …” (HS code 170260) is 0.15 million tons, 

also equivalent to 0.26 billion m3. Therefore, Vietnam should also consider the virtual trade 

between plant-derived and animal-derived agricultural products. 

In summary, the water footprint of each country is determined by its unique climate, 

precipitation patterns, and technological advancement, resulting in varying green, blue, and 

grey water footprints for each type (Table 1). Nations grappling with water issues ought to 

contemplate importing water-intensive products from regions endowed with relatively 

abundant water resources to alleviate strain on local water reservoirs [6]. 

3.4. Analysis of trading partners 

The issue of water scarcity is exacerbated due to prolonged droughts or population 

expansion, resulting in heightened water demands [6]. Virtual water trade is regarded as a 

viable solution to alleviate the strain on water scarcity while also safeguarding food security 

and conserving resources [10]. Analyzing trading partners enables Vietnam to gain a 

comprehensive understanding of its role and responsibilities within the global distribution of 

virtual water trade. 

In evaluating the virtual water trade policy between Vietnam and China, it is crucial to 

account for two pivotal factors: net imports and the abundance of renewable internal 

freshwater resources per capita (m3) as data from The World Bank. For instance, the world 

average renewable freshwater resources in 2020 were recorded at 5,500 m3/capita/year, while 

Vietnam and China reported figures of 3,719 m3/capita/year and 1,993 m3/capita/year, 

respectively [3]. Thus, Vietnam and China are both considered countries with serious water 

scarcity. The virtual water trade between Vietnam and China entails negative net imports, 

and China exhibits a water potential below the global average (5,500 m3/capita/year). 

Consequently, China receives virtual water trade assistance from Vietnam, as indicated in 

Table 3. 

Table 3. Analysis of trading partners based on net import and water abundance. 

Country 
Net import   

(Vietnam) 

Water abundance 2020  

(m3/capita/year) 

World average 

(m3/capita/year) 

China -87.05 billion m3 1,993 

5,500 

Vietnam - 3,719 

In general, Vietnam is supporting China in addressing water scarcity issues, but moving 

forward, Vietnam must refine its import and export strategies concerning agricultural virtual 

water. Continued expansion of exports to China over time may disadvantage Vietnam and 

exacerbate water scarcity problems. Therefore, increasing imports of products with high 

water footprints can assist Vietnam in mitigating water and environmental resource 

shortages. 

4. Conclusion 

Vietnam and China are two countries with a close and comprehensive relationship. There 

have been many studies conducted to explore this relationship from a political and economic 

perspective, but there is still a lack of research conducted from the perspective of water 

security. Therefore, the study is conducted comprehensively on virtual water trade between 

Vietnam and China to better understand from a new perspective. Furthermore, this study 

presents virtual water flows between two countries considering a full range of factors 

including trade status, product structure, water footprint structure, and trading partner 
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assessment. From there, it can help Vietnam have policies to adjust the management of trade 

structures from the perspective of saving water and promoting sustainable use of water 

resources. 

The research findings indicate a significant interconnection in water management 

between China and Vietnam. China experiences a virtual water deficit sourced from Vietnam 

through agricultural product imports spanning the period from 2010 to 2021, with a projected 

upward trajectory in the future. Nevertheless, China is concurrently pursuing a strategy to 

transition from a net importer to a net exporter in agricultural trade by the year 2050 [30]. 

Moreover, the virtual water structure of the two countries is similar due to similarities in 

climatic conditions and levels of scientific and technological advancement in agricultural 

production. Nonetheless, certain agricultural products, such as cassava, exhibit a higher water 

footprint in Vietnam compared to China, yet are exported in significant quantities. This 

necessitates considerations for adjustments in import-export dynamics between regions, 

particularly for specific products, notably those among the top 10 imports and exports. 

Additionally, the product structure between the two countries lacks balance, with a 

predominant focus on certain items like soybean oil (imported) and cassava (exported). 

Notably, Vietnam contributes significantly to addressing water scarcity through virtual water 

exports, which are nearly nine times higher than its imports from 2010 to 2021, despite both 

Vietnam and China possessing considerable potential. However, their domestic water 

recycling rates are lower than the global average. Thus, it is imperative for Vietnam to 

prioritize the implementation of policies aimed at mitigating water scarcity by adapting the 

import-export framework according to the virtual water perspective in the near future. 
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Abstract: This study conducts a critical examination of the Longshore Sediment Transport 

Rate (LSTR) along Cua Can Beach in Phu Quoc City, Kien Giang Province. This notable 

pocket beach is characterized by its natural beauty and burgeoning tourist developments. 

The escalating construction of tourist facilities and resorts in close proximity to the 

shoreline, without considering beach morphological changes, poses a significant threat to 

the coastal integrity and sustainable development of the region. In response to this concern, 

our research aims to estimate the LSTR on the west coast of Phu Quoc to advocate for 

informed coastal engineering management and sustainable development strategies. 

Employing an integrated methodology that combines remote sensing with a simplistic one-

line model, this study provides a comprehensive assessment of sediment dynamics along 

Cua Can Beach. The findings reveal consistent annual sediment transport from south to 

north, with an estimated quantity ranging from 5,000 to 20,000 m³ per year. 

Keywords: Phu Quoc; LSTR; Google earth; Satellite image; Shoreline change; One-line 

model. 

 

1. Introduction 

Phu Quoc, known as the “Pearl Island” for its natural beauty, is the first island city of 

Vietnam and a renowned tourist destination in the southwest of the country. Owing to 

significant socio-economic advancements over the past decade, this island city has witnessed 

extensive development of tourist infrastructure [1], such as resorts and bungalows, along its 

coastline. However, these projects have exerted considerable pressure on the coastal 

environment, as evidenced by several studies in recent years [2]. Although numerous studies 

have explored coastal engineering aspects along Phu Quoc Island’s shoreline, there has been 

scant literature on the Longshore Sediment Transport Rate (LSTR) up to now. Given the 

critical importance of LSTR for coastal engineering projects and management [3–15], this 

study seeks to estimate the LSTR at a specific coastal cell (Cua Can Beach) on Phu Quoc 

Island. This estimation will provide vital data for future coastal management endeavors on 

the island. To estimate the LSTR along Cua Can Beach, we employed an integrated approach 

combining remote sensing [16] and a simplified model for shoreline change, known as the 

One-line model [17]. This study offers essential data, namely the LSTR, for the sustainable 

management of beaches on Phu Quoc Island, a key city in the southwest of Vietnam. 
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2. Materials and Methods  

2.1. Study area 

Cua Can Beach, nestled on the western shores of Phu Quoc Island, exemplifies the 

typical pocket beach, shaped and sustained by the sediments delivered by the Cua Can River. 

Phu Quoc, celebrated as Vietnam's first island city, has garnered international acclaim as a 

prime tourist destination, largely due to its array of pristine and enchanting beaches. Among 

these, Cua Can Beach stand out for its unique geographical and morphological 

characteristics, owed in no small part to the vital contributions of the Cua Can River. 

Originating from the Chua Mountain, the Cua Can River meanders through a course of 28.75 

kilometers before it culminates its journey at the western sea, at the Cua Can River mouth. 

The river's catchment area spans an expansive 147 square kilometers, acting as a crucial 

source of sediments that shape the coastal landscape of Cua Can Beach [18].  

 

Figure 1. Study area. 

2.2. Workflow of the study 

The workflow of this study is illustrated in Figure 2. Initially, data collection was 

undertaken to acquire high-resolution Google Earth images, as well as beach slope and water 

level measurements. Upon gathering the necessary data, an image analysis, inclusive of tidal 

correction, was performed to determine the positions of the shoreline. Subsequently, changes 

in the shoreline and rates of these changes were statistically analyzed, utilizing the tidally 

corrected shoreline data. Finally, the Longshore Sediment Transport Rates (LSTR) were 

calculated using the one-line model, based on the determined shoreline change rates. 

Hoang Sa

Islands

Truong Sa

Islands
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Figure 2. Study flow diagram. 

2.3. Satellite image analysis  

 

Figure 3. GCPs to geo-correct the Google earth images. 
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Google Earth images from 2016 to 2020 were used for the analysis. The details of the 

images are presented in Table 1. Since the free images downloaded from Google Earth are 

not geometrically corrected, they were geo-corrected using a set of 10 ground control points 

(GCPs), as shown in Figure 3. After geo-correction, the shoreline positions were extracted 

using the image segmentation approach [19]. Tidal correction was also applied to the 

shoreline positions using the method presented by [20], utilizing hourly water levels collected 

at the Phu Quoc Oceanography Station from 2016 to 2020. The water level data are presented 

in Figure 4. 

 

Figure 4. Water levels at Phu Quoc Oceanography station in 2016, 2017, 2019 and 2020. 

Table 1. Information of Google earth images. 

Captured date Sources Resolution (m) Coordinate system 

03 Jan 2016 CNES/Airbus 1.0 m UTM 

10 Dec 2017 Maxar Technologies 1.0 m UTM 

06 Jan 2019 CNES/Airbus 1.0 m UTM 

14 Dec 2019 Maxar Technologies 1.0 m UTM 

19 Feb 2020 Maxar Technologies 1.0 m UTM 

For the purpose of convenience, a local coordinate system was used in this study to 

facilite the calculation of shoreline change rates as well as integrated the LSTR a long the 

Cua Can Beach. This local coordinate system is defined by rotating the images in the UTM 

system at an angle of 132o clockwise as shown in Figure 5. 

 

Figure 5. Defining the local coordinate system. 

2.4. Shoreline changes and shoreline change rate  

The shoreline positions extracted from the images were utilized to calculate the changes 

in the shoreline relative to the baseline established in 2016. This calculation was performed 

using the following equation: 
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 Dy = y(xi,ti) – y(xi,2016) (1) 

where 0  xi  3800 m and 2016  ti  2020. 

In addition, rates of shoreline change are calculated based on the temporal variations in 

shoreline positions at each cross-section of the beach. This analysis employs the least squares 

regression method to quantify changes over time, ensuring a robust statistical foundation for 

understanding trends. The specific formula used for this calculation is as follows [21]: 

y = a×t + b (2) 

where y represents the shoreline position measured at time t, a is the rate of shoreline 

change calculated using the least squares regression method, and b is the intercept of the 

regression line with the y-axis (ordinate). 

2.5. Integrated longshore sediment transport rate  

The one-line theory was utilized to estimate the LSTR based on long-term shoreline 

changes [10]. This model states that the beach profile shifts parallel to itself in the cross-

shore direction, as illustrated in Figure 7. Developed on the principle of sand conservation 

within a defined control volume of the shoreline section, the model presupposes the existence 

of both an offshore limit and an upper limit. These limits define the boundaries beyond which 

no significant changes occur. Within these confines, the beach profile maintains a constant 

shape as it moves in the cross-shore direction (Figure 7), suggesting that sediment transport 

gradients are uniformly distributed across the active portion of the beach [17]. 

 

Figure 6. Sketch showing the idea of the one-line model. 

The LSTR on the southern and northern coasts of Cua Can Beach were analyzed and 

integrated as shown in Figure 7, utilizing the theory of the One-line model. In Figure 7, the 

black solid lines represent the initial shoreline position, while the dashed blue lines depict the 

shoreline position after a period of time. This model is based on the principle of sediment 

conservation, which is outlined as follows [17]: 

y 1 Q
0

t D x

 
+ =

 
 (3) 

In this analysis, D represents the limit height of longshore sediment transport, which is 

the sum of berm height (DB) and depth of closure (DC), expressed as D = DB+DC. Here, t 

denotes time, while x and y are the longshore and cross-shore distances, respectively. Q 

signifies the LSTR. Due to the limited availability of measured data, the values for DB and 

DC were sourced from Song Tranh inlet, located approximately 15 km south of the study area 
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and sharing the same coastline characteristics. As reported by [22], DB and DC are determined 

to be 4.5 m and 1.5 m, respectively, leading to a total depth (D) of 6 m. 

 

Figure 7. Integrated LSTR along the Cua Can Beach. 

From Equation (3) and as illustrated in Figure 7, the integration of LSTRs on the southern 

and northern coasts of the Cua Can Beach area can be conducted as follows: 

- For the southern coastline: 

1

x

x

y
Q(x) D dx

t


=


 (4) 

- For the northern coastline: 

2

x

x

y
Q(x) D dx

t


= −

  (5) 

To integrate the Longshore Sediment Transport Rates (LSTRs), it is necessary to define 

a boundary where the LSTR equals zero. Since Cua Can Beach is a pocket beach, the 

headlands at both ends are considered the boundaries where the transport rate, Q, is zero. 

These boundaries are denoted as x1 = 0 and x2 = 3800 m in Figure 7. 

3. Results  

3.1. Shoreline changes 

Shoreline changes, with reference to the year 2016, are presented in Figure 8. As can be 

seen from the figure, the shoreline along the southern coast of the Cua Can River mouth 

remained stable from 2016 to 2020, as indicated by the fluctuations of the shoreline around 

the referenced line. There was a small amount of beach accumulation at the beach section 

from x = 1000 m to x = 1400 m. On the other hand, significant beach accretion can be 

observed on the northern coastline, with the maximum buildup of the shoreline 

approximately 35 m at the end of the beach (x = 3400 m to x = 3800 m). Another notable 

Figure 8. Shoreline changes. 
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point is the shoreline retreat at the Cua Can River mouth, with the maximum retreat reaching 

up to -25 m. From this diagram, it can be inferred that sand is being transported to the north 

of Cua Can Beach. 

3.2. Shoreline change rates 

The temporal variation of shoreline positions at selected cross-sections of Cua Can 

Beach is presented in Figure 9, where the blue circles represent the shoreline positions from 

2016 to 2020, and the red line is the linear regression line of these positions. As shown in 

Figure 9, the equations of the regression lines follow the form of Equation (2). Consequently, 

the rate of shoreline change at each cross-section of Cua Can Beach can be easily determined 

from Figure 9. For instance, the rate of shoreline change at x = 2700 m is -0.0137 m/day, 

which equates to approximately -5 m/year. It should be noted that the results are based solely 

on a series of data from 2016 to 2020. Therefore, the findings of this study should be applied 

cautiously and must be supplemented with additional data in the future to enhance the 

reliability of the results. Additional calculated values for the results are presented in Table 2. 

 

Figure 9. Temporal variations of shorelines at some cross-sections along the Cua Can Beach. 
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Table 2. Statistical table of additional calculated values for the results. 

Cross-

section 

Distance 

alongshore x (m) 

a 

(m/day) 

a 

(m/year) 

D = DB + 

DC (m) 

DA 

(m2/year) 

DV 

(m3/year) 

Q 

(m3/year) 

1 0 -0.0009 -0.32 6 0 0 0 

2 100 0.0031 1.13 6 40.77 245 245 

3 200 -0.0006 -0.21 6 45.95 276 520 

4 300 0.0017 0.61 6 19.98 120 640 

5 400 0.0010 0.36 6 48.75 292 933 

6 500 0.0001 0.03 6 19.43 117 1,049 

7 600 0.0014 0.50 6 26.45 159 1,208 

8 700 0.0002 0.07 6 28.64 172 1,380 

9 800 0.0013 0.47 6 27.11 163 1,542 

10 900 0.0001 0.02 6 24.54 147 1,690 

11 1000 0.0057 2.06 6 104.09 625 2,314 

12 1100 0.0045 1.66 6 186.11 1117 3,431 

13 1200 0.0061 2.23 6 194.65 1168 4,599 

14 1300 0.0043 1.56 6 189.62 1138 5,736 

15 1400 -0.0005 -0.18 6 69.17 415 6,151 

16 1500 0.0008 0.30 6 6.46 39 6,190 

17 1600 0.0008 0.30 6 30.09 181 6,371 

18 1700 -0.0003 -0.13 6 8.56 51 6,422 

19 1800 0.0008 0.28 6 7.51 45 6,467 

20 1900 -0.0006 -0.23 6 2.12 13 6,480 

21 2000 -0.0012 -0.44 6 -33.90 -203 6,277 

22 2100 -0.0011 -0.41 6 -42.74 -256 6,020 

23 2200 -0.0002 -0.09 6 -25.00 -150 5,870 

24 2300 -0.0035 -1.28 6 -68.25 -410 5,461 

25 2400 -0.0019 -0.68 6 -97.70 -586 4,874 

26 2500 0.0043 1.58 6 45.19 271 5,146 

27 2600 -0.0130 -4.76 6 -158.78 -953 4,193 

28 2700 -0.0137 -4.99 6 -487.50 -2925 18,130 

29 2800 -0.0027 -1.00 6 -299.67 -1798 19,928 

30 2900 0.0015 0.54 6 -22.98 -138 20,066 

31 3000 0.0045 1.65 6 109.79 659 19,407 

32 3100 0.0058 2.13 6 189.03 1134 18,273 

33 3200 0.0060 2.18 6 215.39 1292 16,981 

34 3300 0.0100 3.66 6 291.89 1751 15,230 

35 3400 0.0126 4.61 6 413.16 2479 12,751 

36 3500 0.0183 6.67 6 563.87 3383 9,367 

37 3600 0.0133 4.85 6 575.83 3455 5,912 

38 3700 0.0170 6.21 6 552.70 3316 2,596 

39 3800 0.0067 2.45 6 432.70 2596 0 

The diagram in Figure 10 depicts the rate of shoreline change along Cua Can Beach, 

segmented at 100 m intervals. The rate of change is visually represented by a line graph, with 

the horizontal axis (x) marking the distance along the beach in meters, and the vertical axis 

(a) indicating the rate of shoreline change in meters per year (m/year). Upward spikes along 

the line graph correspond to areas of accretion, while downward spikes indicate erosion. 

Noticeably, there is a significant retreat at the river mouth, indicated by a rate of -5 

m/year, which signifies erosion. Conversely, along the northern stretch of the beach, there is 

a substantial advance, with the maximum accretion rate reaching up to 6 m/year. This positive 

change rate indicates areas of beach growth or accretion. 

The majority of the southern shoreline exhibits stability, with no discernible rate of 

change, marked as 0 m/year on the diagram. This suggests that these areas have neither 

gained nor lost significant amounts of sand over the observed period. An exception is noted 
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in the section between 1000 m and 1400 m, where there is evidence of accretion with a change 

rate of up to 2 m/year. 

 

Figure 10. Shoreline change rate at intervel of 100 m along the Cua Can Beach. 

3.3. LSTR along the Cua Can Beach 

The Longshore Sediment Transport Rate (LSTR) along Cua Can Beach is depicted in 

Figure 11. The figure reveals that LSTR was substantial along the northern part of Cua Can 

Beach, with a rate of 20,000 m³/year. In contrast, the LSTR on the southern side of the Cua 

Can River mouth was much lower, at approximately 5,000 m³/year.  

 

Figure 11. LSTRs along the Cua Can Beach. 

4. Discussions 

To evaluate the results of this study, the Longshore Sediment Transport Rate (LSTR) 

estimated herein was compared with LSTRs estimated for the Song Tranh Inlet [22], which 

is located approximately 15 km south of our study area, along the same coastline on the west 

coast of Phu Quoc City. This comparison is depicted in Figure 12. In the study at Song Tranh 

Inlet [22], the LSTR was calculated based on morphological changes of the sand spit at the 

inlet. The LSTR calculations were segmented into three periods, corresponding to the 

elongation and breaching of the sand spit. Additionally, a value of LSTR calculated using the 

CERC formula was also provided. As observed in the figure, the LSTR estimated at Cua Can 

Beach has the same order of magnitude as that in the Song Tranh Inlet study. This consistency 

underscores the validity of the methodology employed in our study. 
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Figure 12. Comparison of LSTR with a study at Song Tranh inlet in the Phu Quoc city [22]. 

5. Conclusions  

Remote sensing and the theory of the one-line model have been applied to rapidly assess 

the shoreline changes and Longshore Sediment Transport Rates (LSTRs) along Cua Can 

Beach in Phu Quoc City, Kien Giang Province, Vietnam, from 2016 to 2020. The main 

findings of this study can be summarized as follows: 

- The southern part of Cua Can Beach remained stable during the survey period, while 

the shorelines at the Cua Can River mouth retreated at a rate of 5 m/year. In contrast, the 

beach on the northern part accumulated sediment at a rate of 6 m/year. 

- The predominant direction of the LSTRs along Cua Can Beach was from south to north. 

- The magnitude of LSTR along the southern beach was 5,000 m³/year, and along the 

northern beach, it was 20,000 m³/year. The maximum LSTR at Cua Can beach is comparable 

to the LSTRs estimated for the Song Tranh Inlet, located 15 km south of the study area. 

- The main drawback of this study is that it is based solely on a series of data from 2016 

to 2020. Therefore, the findings of this study should be applied cautiously and must be 

supplemented with additional data in the future to enhance the reliability of the results. 
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Abstract: Ba Ria-Vung Tau province is situated in the Southern main economic area with 

rapid urbanization, industry, and modernization. The expansion of impermeable land cover 

has grown significantly in response to climate change and global warming, which have 

resulted in higher surface temperatures in the province in recent years. This study provides 

an assessment of the impact of increased temperature in Ba Ria - Vung Tau province based 

on surface temperature values extracted from thermal infrared Landsat image data during 

the period 2010-2021. The variety of land cover tends to influence the properties of land 

surface temperature reported by satellite sensing sensors. The results show that the heat 

island activity is strong, with a decreasing trend from urban to peri-urban areas. The surface 

temperatures above 30-40oC accounted for just 5% of the study area in 2010, but the rate 

doubled by 2021. Typical areas with an increase in surface temperature due to the rapid 

urbanization include Vung Tau city, Ba Ria city, Long Dien district, and Phu My town. This 

demonstrates that the changes in land cover is a factor contributing to the increase in land 

surface temperature in the area. 

Keywords: Remote sensing; Surface temperature; Land cover change. 
 

1. Introduction 

In parallel with population growth, urbanization and industrialization have accelerated 

rapidly. This has resulted in fast changes in land use which affected the vegetation cover on 

the Earth surface tremendously. Particularly, this affects the distribution of solar radiation, 

leading to an increase in atmospheric temperature, especially in urbanizing areas with hotter 

temperatures than rural areas [1, 2]. Many studies on the effects of land cover change on 

atmospheric dynamics and climate change have been conducted across the world. The 

expansion of building causes the shrinkage of green areas, which causes a rise in the Earth’s 

surface temperature [3–6], which may be detected by measuring the emissivity of vegetation 

and soil.  

With the advanced technologies of remote sensing, satellite images are now the best option 

for analyzing surface cover changes and swiftly collecting data. In particular, Landsat images 

have been widely utilized in numerous studies to monitor local and global temperature changes. 

Land cover is one of the primary elements influencing surface temperature as shown in remote 

sensing images. According to previous studies, the surface temperatures of different land uses 

have significant differences [6]. Temperatures increase in areas influenced by anthropogenic 

activities and construction facilities, while being low in areas with vegetation [1]. Remote 

sensing offers high-resolution data with consistent Earth surface coverage, making it easy to 
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extract information from satellite data [7]. The combined use of remote sensing with GIS is 

effective in visualizing extracted information and monitoring land use changes. Climate 

change and surface changes have led to extensive assessments of land surface temperature 

changes in various global regions. Studies in Indonesia [3], Nigeria [5], Iran [8], India [9], 

Egypt [7] evaluated surface temperatures using heat bands in Landsat data using remote 

sensing and GIS. According to research findings, there is a considerable reduction in the 

amount of vegetation due to urban expansion, which raises surface temperatures. 

In recent years, many Vietnamese researchers have paid their attention and interest in 

analyzing surface temperature fluctuations in the context of global climate change [10–13]. 

The study [10] claimed that pressure from the processes of industrialization, modernization, 

and urbanization in Ho Chi Minh (HCM) city is the main factor of higher surface temperatures 

and a robust urban heat island phenomenon. Similarly, studies in HCM [13], Binh Duong [11], 

and Hai Phong [12] analyzed land surface temperature changes based on impermeable 

surfaces in land cover and thermal infrared images using Landsat imagery. 

Ba Ria - Vung Tau (BR-VT) province is located in the Southeast and serves as the 

entrance to the East Sea of provinces in the region with significant expansion of urbanization, 

industrialization, and modernization. The average amount of sunlight hours ranges from 170 

hours/month in September to 299 hours/month in April. The change in average temperature 

in months (2015-2021) is around 0.6-2ºC compared to the average annual temperature.  

This study aims to determine land use changes through classification and land surface 

temperature fluctuations in Ba Ria - Vung Tau province using Landsat data through the 

integration of remote sensing and GIS. In the context of climate change and global warming, 

this research can also be helpful in regulating and assisting decision-makers with a visual 

picture of high-temperature areas and urban construction development. 

2. Methods and data 

2.1. Study area 

Figure 1. Location of the study area. 
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BR-VT province is located in the Southern key economic region, at the entrance to the East 

Sea of the provinces in the Southeast region, with rapid development, with rapid development 

of urbanization, industry, and modernization including changes in land use and temperature. 

This study was conducted throughout the province, including Vung Tau and Ba Ria cities, Phu 

My town, Long Dien district, Dat Do district, and Xuyen Moc district have an area of 

approximately 1473 km2 (Figure 1). located in the tropical monsoon zone, with two distinct 

seasons and high temperatures. The area of urban and concrete land has increased rapidly, 

leading to rising surface temperatures, and marking urban heat island activity in recent years. 

This has been contributing a part to the global warming leading to climate change. BR-VT 

province has abundant radiation sources from sunlight. The study area’s average temperature is 

28.01°C.  

2.2. Data 

In the study, the data used is Landsat 7 images (for the period before February 2013) and 

Landsat 8 images of BR-VT province including 7 districts, cities and town collected from the 

United States Geological Survey at the earthexplorer.usgs.gov website [14]. The Landsat 

image data collected has been modified to correct terrain elevation deformation. It was 

collected twice (16 March 2010; 24 March 2016 and 06 March 2021) during the dry season 

(December to April of the following year), images have high quality and negligible cloud 

influence (cloud ratio < 1%), coordinates UTM-WGS-84 zone 48 North (Table 1). 

Table 1. Detailed information on Landsat satellite. 

No. Satellite Acquisition time Spatial resolution (m) 

1 Landsat 7 16/03/2010 30 

2 Landsat 8 24/03/2016 30 

3 Landsat 8 06/03/2021 30 

Landsat 7 is equipped with an enhanced thematic mapper plus (ETM+) map sensor with 

185 kilometers scanning range. The TM sensor contains 7 bands for recording 

electromagnetic spectrum reflections or radiation emitted from the earth’s surface and 1 

panchromatic band (Table 2) [15]. 

Landsat 8 improves on previous generations in terms of performance and dependability 

by carrying two sensors: Operational land imager (OLI) and thermal infrared sensor (TIRS). 

The scanning band width is 190 kilometers. Landsat 8 picture includes 11 spectral bands (9 

shortwave bands and 2 longwave thermal bands) (Table 2) [16]. These three images provide 

seasonal detail of the Earth’s surface with a spatial resolution of 30 m. 

Table 2. Landsat satellite specifications [16]. 

Landsat 7 ETM+ Bands  Landsat 8 OLI and TIRS Bands 

Bands Wavelength 

(µm) 

Resolution 

(m) 

 Bands Wavelength 

(µm) 

Resolution 

(m) 

     Band 1 Coastal/

Aerosol 

0.435-0.451 30 

Band 1 Blue 0.441-0.514 30  Band 2 Blue 0.452-0.512 30 

Band 2 Green 0.519-0.601 30  Band 3 Green 0.533-0.590 30 

Band 3 Red 0.631-0.692 30  Band 4 Red 0.636-0.673 30 

Band 4 NIR 0.772-0.898 30  Band 5 NIR 0.851-0.879 30 

Band 5 SWIR-1 1.547-1.749 30  Band 6 SWIR-1 1.566-1.651 30 

Band 6 TIR 10.31-12.36 60  Band 7 SWIR-2 2.107-2.294 30 

Band 7 SWIR-2 2.064-2.345 30  Band 8 Pan 0.503-0.676 15 

Band 8 Pan 0.515-0.896 15  Band 9 Cirrus 1.363-1.384 30 

     Band 10 TIR-1 10.60-11.19 100 

     Band 11 TIR-2 11.50-12.51 100 

NIR - Near Infrared 

SWIR - Shortwave Infrared 

 Pan - Panchromatic 

TIR - Thermal Infrared 
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2.3. Methods 

2.3.1. Remote sensing images interpretation 

Atmospheric correction will aid in the elimination of confounding variables that alter the 

image band’s reflectance value taken by satellite sensors, boosting the dependability of the 

analysis results. The procedure for performing land surface temperature calculations and the 

methods used are shown in Figure 2. 

 

Figure 2. Methodology for land surface temperature assessment. 

2.3.2. Land surface temperature from Landsat 8 image data 

This study uses the emissivity from normalized difference vegetation index approach to 

calculate land surface temperature using Landsat 8 image data. 

Converting numerical values to spectral radiant energy values: Landsat satellite image 

data will be modified for radiation after being captured, transforming numerical values to 

spectral reflected energy values. Because there is no link between the spectral radiation value 

and Landsat 8 image data, so it should be calculated directly according to the following 

formula [16, 17]: 

where Lλ is the spectral radiance; ML is the band-specific multiplicative rescaling factor 

from the Landsat 8 image metadata file (ML = 0.0003342); Qcal is the quantized and calibrated 

standard product pixel values; AL is the band-specific additive rescaling factor from the 

Landsat 8 image metadata file (AL = 0.1). 

Conversion to Top of Atmosphere Brightness Temperature: Using the thermal constants 

in the metadata file, thermal band data can be converted from spectral radiance to top of 

atmospheric brightness temperature [10]. 

Lλ = ML × Qcal + AL (1)  
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where Tb is the top of atmosphere brightness temperature; Lλ is TOA spectral radiance; 

K1, K2 are the band-specific thermal conversion constant from the Landsat 8 image metadata 

file (K1 = 774.88; K2 = 1321.07). 

Normalized difference vegetation index (NDVI): NDVI is a typical technique that uses 

reflectance measurements at red and near-infrared wavelengths to determine the quality of 

terrestrial green vegetation. Use the following formula to determine the NDVI value [18]: 

where NDVI is the normalized Difference Vegetation Index; NIR is the near-infrared 

band of Landsat 8 remote sensing image; RED is the red band of Landsat 8 remote sensing 

image. 

Proportion of Vegetation: The proportion of vegetation is calculated according to the 

formula [18]: 

where Pv is the proportion of vegetation; NDVImin and NDVImax are values range from -

1 to 1. 

Surface emissivity: The emissivity of natural surfaces varies due to different land cover 

characteristics, such as the distinction between fields, urban areas, and vacant land [10, 19]. 

Surface emissivity (ε) is calculated based on the following formula [10, 18, 19]: 

where m = εv – εs – (1 – εs)Fεv; n = εs(1 + εs)Fεv 

where εv and εs are the surface emissivities of the vegetated surfaces and vacant land, 

respectively. The reference values for εv and εs are 0.99 and 0.97, respectively [19]. And F is 

the shape index, assuming a different geometric distribution and F = 0.55 [19, 20]. Therefore, 

the formula is represented precisely as follows: 

where ε is the surface emissivity; Pv is the proportion of vegetation values. 

Land surface temperature (LST): is the radiation temperature calculated from the 

brightness temperature, wavelength of emitted radiation, and land surface emissivity using 

the following formula [3, 16, 19]: 

where TS is the land surface temperature; Tb is the top of atmosphere brightness 

temperature; λ is the wavelength of emitted radiation; ε is the surface emissivity. 

The wavelength of the radiated heat band
2hc

1,4388 10 mK 14388 mK− = =  = 


 

2.3.3. Land surface temperature from Landsat 7 image data 

Perform calculations to convert pixel values from numerical values to spectral radiant 

values according to the formula [15]: 

where Lλ is the spectral radiance; Qcal is the quantized and calibrated standard product 

pixel values; Lmax, Lmin are the spectral radiation value is calculated corresponding to each 

low gain and high gain state (Table 3). 
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Table 3. Lmax, Lmin values for LANDSAT 7 thermal images. 

Band Satellite Lmax Lmin 

6.1 LANDSAT 7 /ETM+ High gain 17.04 0 

6.2 LANDSAT 7 /ETM+ Low gain 12.65 3.2 

Convert the value of spectral radiance to temperature: The image is converted from 

spectral radiance values to physical variables. The satellite's effective temperature (black-

body temperature) and conversion using the Planck physics formula [21]: 

where Ts is the land surface temperature; Lλ is the spectral radiance; K1, K2 are the 

correction factor is provided in the Landsat 7 image metadata file (Table 4). 

Table 4. K1, K2 values for LANDSAT 7 thermal images. 

Band Satellite K1 K2 

6.1 LANDSAT 7 /ETM+ High gain 666.09 1282.71 

6.1 LANDSAT 7 /ETM+ Low gain 666.09 1282.71 

2.3.4. Evaluate accuracy after classification 

The Kappa index (K) is often used to evaluate the dependability of remote sensing image 

classification maps [9], which is calculated according to the following formula: 

where T is an overall accuracy by digital matrix; E is the quantity representing the 

expectation of predictable classification accuracy. 

The following table 5 illustrates the correlation between the accuracy of the classification 

map and the range of the Kappa coefficient. 

Table 5. Ranges for the Kappa Coefficient [9]. 

Kappa Coefficient Classification 

< 0.4 Poor 

0.41 - 0.60 Moderate 

0.61 - 0.75 Good 

0.76 - 0.80 Excellent 

> 0.81 Almost perfect 

3. Results and discursion  

3.1. Component parameter  

To determine the surface temperature in Ba Ria - Vung Tau province in 2010-2021, the 

collected remote sensing data is processed and calculated, respectively: Spectral Radiation 

values; Surface emissivity; Brightness temperature; NDVI index; Value of proportion of 

vegetation. These values are calculated from Landsat 7 and Landsat 8 images, using the Raster 

Calculator tool of ArcMap 10.4.1 software (shown in Figure A1, A2, A3 in the Appendix 

section).  

3.2. Land cover classification 

The land cover classification map illustrates that BR-VT province has many types of 

cover, including construction areas, residential areas, traffic areas (impervious surfaces); 

vacant land; fields, forests, plantations (vegetation), and networks of reservoirs and rivers 

(Figure 3). From 2010 to 2021, the impervious surface cover in Phu My town, Ba Ria and 

2
S

1

K
T

K
Ln 1

L

=
 

+ 
 

 

(9)  

( )
( )

T E
K

1 E

−
=

−
 (10)  



J. Hydro-Meteorol. 2024, 19, 47-60; doi:10.36335/VNJHM.2024(19).47-60                           53 

Vung Tau cities and Long Dien district increased significantly, rising from 596.22 km2 to 

680.58 km2. Meanwhile, the area of vacant land and vegetation tends to decrease (Table 6). 

The classification results in 2010, 2016 and 2021 both have Kappa coefficients above 

0.8 and overall accuracy above 90% (Table 7) according to the range of the Kappa coefficient 

in Table 5. 

 

Table 6. Area of  land cover in Ba Ria - Vung Tau province. 

Types of land cover 

16 March 2010  24 March 2016  06 March 2021 

Area 

(km2) 
%  

Area 

(km2) 
%  

Area 

(km2) 
% 

Impervious surface area 596.22 17.547%  57.23 16.843%  680.58 20.071% 

Vacant land 373.99 11.006%  46.85 13.788%  368.60 10.870 % 

Vegetation 841.86 24.776%  79.22 23.315%  763.12 22.505 % 

Water 94.27 2.774%  7.78 2.289%  94.65 2.791 % 

Table 7. Classification accuracy. 

Accuracy 2010 2016 2021 

Overall Accuracy 97.55% 98.38% 98.57% 

Kappa Coefficient 0.9658 0.9773 0.9805 

3.2. Land surface temperature 

The results of NDVI on 16 March 2010 (Figure 4a); 24 March 2016 (Figure 4b) and 06 

March 2021 (Figure 4c) demonstrate that areas with low NDVI values are located mostly in 

hydro-system objects, including the Thi Vai River, Dinh River, Ray River, system of rivers, 

small streams, and lakes in BR-VT province. Low to medium NDVI values are seen in 

residential areas, construction works, and vacant land. Areas with forests and trees are places 

with medium to high NDVI values. 

Figure 3. Classification of land cover in Ba Ria 

- Vung Tau province: (a) 16 March 2010; (b) 24 

March 2016; (c) 06 March 2021. 
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From the results of analyzing remote sensing images, the area and surface temperature 

distribution in Ba Ria - Vung Tau province have been determined during the dry season on 16 

March 2010; 24 March 2016 and 06 March 2021. 

Table 8. Area of temperature levels in Ba Ria - Vung Tau province. 

Temperature 

levels 

16 March 2010  24 March 2016  06 March 2021 

Area (km2) %  Area (km2) %  Area (km2) % 

< 24 213.24 11.18  21.95 1.15  0.04 0.0021 

24 - 27 769.89 40.38  240.49 12.61  224.13 11.75 

27 - 30 726.33 38.09  589.68 30.93  472.94 24.80 

30 - 33 190.13 9.97  693.24 36.36  819.45 42.98 

33- 37 7.08 0.37  340.41 17.85  380.60 19.96 

> 37 0.000616 0.000032  20.94 1.10  9.55 0.50 

The surface temperature map shows that in 2010, areas with high temperatures above 30oC 

only accounted for 10.35% of the area (197.21 km2); the majority of the areas had temperatures 

below 30oC, accounting for 1,709.46 km2 (89.65% area) (Figure 6a). Surface temperature map 

reveal that the study area has a substantial temperature change by 2016 and 2021. Areas with 

temperatures below 30oC only account for 44.96% and 36.56% of the area, respectively. 

Whereas areas with temperatures over 30oC increased five times and six times compared to 

2010, accounting for 55.31% and 63.44% of the area, respectively (Figures 6b, 6c). 

Surface temperatures rise in regions with poor vegetation, such as construction areas, as 

well as high mountain areas exposed to sunshine. The results show that temperatures exceeding 

37oC in BR-VT province tend to steadily rise during the dry season. According to Table 8 and 

Figure 4. NDVI value in Ba Ria - Vung Tau 

province: (a) 16 March 2010; (b) 24 March 

2016; (c) 06 March 2021. 

. 
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Figure 5, the image analysis results in 2010 almost did not reveal a temperature above 37oC, 

but this temperature existed with an area of 20.94 km2 by 2016 and 9.55 km2 by 2021. In 

contrast, areas with temperatures below 24oC tend to decrease sharply in the dry season, from 

213.24 km2 in 2010 to 21.95 km2 in 2016 and 0.04 km2 in 2021. Temperatures of 24-30oC are 

expected to fall from 1,496.22 km2 to 697.07 km2 between 2010 and 2021. While the 

temperature level from 30 to 37oC gradually increases, the area increased from 197.21 km2 in 

2010 to 1,054.59 km2 and 1,200.05 km2 in 2016 and 2021, respectively. The majority of the 

area is concentrated in Ba Ria and Vung Tau cities, Long Dien district, Phu My town. The 

Xuyen Moc and Dat Do districts also have an increase in heat, but not much, mainly coming 

from the formation of many housing projects for residents or coastal tourism regions. 

 

Figure 5. Comparison chart of land surface temperature analysis results. 

From the results of land surface temperature, NDVI, and the land cover classification maps 

of the study area from 2010 to 2021, it shows that vegetation has definitely declined in most 

districts in the province within 11 years (except Chau Duc and Xuyen Moc districts). The 

reason is that since 2010, the area's population growth rate has expanded significantly along 

with the growth of the economy, with the formation of many factories, enterprises, or industrial 

zones, leading to a large demand for human resources and a large amount of labor. This results 

in a strong trend of industrialization, urbanization, and tourism services in coastal districts and 

cities, causing the vegetation area to be converted to residential land and construction land. 
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4. Conclusion 

This study used Landsat images taken during the dry season to classify surface cover and 

survey surface temperature by estimating Normalised Difference Vegetation Index (NDVI). 

The study’s findings indicate that there was a notable increase in the BR-VT area's 

surface temperature between 2010 and 2021. In particular, in the dry season of 2021, the 

majority of the study region has a temperature of roughly 30-37oC, a sixfold increase over 

2010, concentrated in building zones, residential areas, roadways (impervious surfaces), and 

vacant land. Meanwhile, compared to 2010, areas with fields, forests, plantations 

(vegetation), and networks of reservoirs and rivers with temperatures ranging from 24 to 

30oC account for only 36.55% of the area. 

According to these findings, the land surface temperature in BR-VT province has 

fluctuated significantly over the years. At the same time, it demonstrates that vegetation cover 

and activity by humans have a significantly affect the surface temperature in the area. The 

study provides to giving information to assist managers in taking suitable actions in sustainable 

urban planning and development, therefore reducing the impact of rising surface temperatures 

on the urban environment in the context of climate change. 
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Appendix 

 

Figure A1. Results of indices on 16 March 2010 

(a) Spectral radiation value; (b) Band 6 value; (c) 

NDVI. 
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Figure A2. Results of indices on 24 March 2016: 

(a) Spectral radiation value; (b) Surface emissivity 

value; (c) Brightness temperature value; (d) NDVI;  

(e) Proportion of vegetation. 
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Figure A3. Results of indices on 06 March 2021: 

(a) Spectral radiation value; (b) Surface emissivity 

value; (c) Brightness temperature value; (d) NDVI;  

(e) Proportion of vegetation. 
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Abstract: This paper presents comparative case studies between an ancient town in Quang 

Nam province (QN town), and a commune in Da Nang city (DN commune) in order to 

quantitatively assess the adaptive capacity of households in response to natural disasters. An 

indicator-based assessment with a set of 13 indicators is applied in this study. The results of 85 

interviewed households in two study areas revealed that despite the higher probabilities of 

disaster occurrence, the households in QN town demonstrated better adaptive capacity 

compared to those in DN commune. The quantitative assessment (on a 0–1 scale) of adaptive 

capacity in the QN town and DN commune showed the values of 0.61 and 0.55, respectively. 

QN town had higher adaptive capacity than DN commune due to higher income stability, better 

preparedness measures for disasters, higher percentages of households receiving disaster 

warning information, better accessibility to clean water, healthcare service, food, and financial 

support during and after disasters. Conversely, DN commune demonstrated higher insurance 

coverage, higher percentages of households participating in social organizations, and receiving 

social support during and after disasters. Drawing from the findings that influence the 

difference in adaptive capacity levels between households in QN town and DN commune, the 

study subsequently proposes the recommendations for policymakers and individuals in both 

areas to improve their long-term prevention and preparedness strategies, enabling them to 

effectively respond to natural disasters. 

Keywords: Adaptive capacity; Disaster; Indicator; Household; Vietnam; Vulnerability. 

____________________________________________________________________ 

1. Introduction  

Natural hazards are defined as environmental phenomena that pose possible impacts on 

societies and the human environment, especially in developing countries where the 

community faces greater exposure and vulnerability to climate-driven disasters [1]. As the 

threat of climate change continues to grow, it is imperative for human society to prioritize 

both mitigation and adaptation strategies in response to disasters [2]. Furthermore, it is 

recognized that natural disasters increase vulnerability to climate change, simultaneously 
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diminishes the ability to withstand risks, shocks, and stresses. Therefore, it is essential to 

enhance adaptive capacity by promoting and supporting adaptive measures, contributing to 

reduction of climate change vulnerability [3]. Adaptation entails developing the capacity to 

adjust system components, structures, and processes in response to anticipated or observed 

long-term changes, such as alterations in the frequency of hazardous events [4]. It is, therefore, 

crucial to comprehend, evaluate, and enhance adaptive capacity in order to facilitate adaptive 

measures and mitigate climate change impacts [5].  

A variety of studies assessed the adaptive capacity to disasters using both secondary data 

and primary data (e.g., interviews, surveys, and focus group discussion) [6]. Specifically, 

Bossio et al. [7] identified the adaptive capacities in urban areas, underscoring the significance 

of governance and social institutions in shaping urban adaptive capacity. Recognizing the 

limitations of existing investments in improving the understanding of adaptive capacity in 

tropical coastal communities, Cinner et al. [8] proposed an approach that encompassed five 

key domains to build adaptive capacity, including assets for resilience, flexibility in strategies, 

collective organization, and action, learning and responsiveness to change, and agency in 

decision-making, while also highlighting strategies for their development. Nguyen et al. [9] 

identified significant variations in adaptive capacity across different regions in Vietnam, 

highlighting specific areas that require urgent attention to enhance their resilience to typhoons, 

which can inform national disaster risk reduction initiatives and guide the development of 

effective mitigation strategies for long-term sustainability. Aalst [10] also supported Nguyen 

et al. [9] that even though the households were highly vulnerable due to climate change, it is 

possible to enhance the resilience of the households by targeting the policy measures for the 

specific socioeconomic groups. 

Gaining insights into and evaluating the adaptive capacity at the local level is necessary 

to initiate an understanding of how it can be fostered through broader development initiatives 

at both local and national scales [6]. Furthermore, households play a critical role within the 

intricate socio-natural system and are susceptible to the impacts of climate change. Therefore, 

conducting research on climate change adaptation at the household level is crucial for 

developing effective strategies to enhance adaptation and reduce vulnerability [11]. However, 

despite the critical role that household-level decisions play in shaping local and systemic 

vulnerability, there is a scarcity of research focused on assessing adaptive capacity to historical 

disaster events, particularly at the household level [6, 12].  

Vietnam ranks among the world’s most vulnerable countries to natural hazards [13]. Due 

to its geographic location and geographical conditions with a long coastline of 3,240 km, 

Vietnam has unique climate features, causing severe and diverse disasters in this area [14]. 

Accordingly, the country experiences high levels of exposure to disasters [3, 14]. Typhoons 

and floods are the most frequent hazards, impacting roughly 59% of Vietnam's landmass and 

affecting around 71% of its population [15]. Located downstream of the Vu Gia–Thu Bon 

River system in the South-Central Coast areas, Da Nang city and Quang Nam province have 

experienced several severe typhoons, floods, and inundation [16]. Meanwhile, the occurrence 

and severity of natural disasters have recently risen because of the influence of climate change 

[16]. The heightened frequency of intense rainstorms poses a significant threat of devastating 

floods to urban communities in Da Nang city, causing exacerbated social and physical damage 

in this area [16]. Despite reports of relatively high adaptive capacity among Da Nang city’s 

urban households [11, 17], the historical typhoon-induced inundation that struck the city in 

October 2022 caused severe damage to human lives and properties [18]. This fact highlights 

the understanding of how households can adapt to exceptional disasters. Meanwhile, the 

increasing occurrence of severe floods in Quang Nam province has also significantly impacted 

communities’ livelihoods and socio-economic development [19]. Additionally, within Quang 

Nam province, roughly 1.3% of the area is susceptible to flooding, with Hoi An city facing the 

highest risk (25.4% of the area), followed by Tam Ky (17.7% of the area) if the sea level rises 
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by 100 cm [20]. This climate-driven impact could exacerbate the annual inundation in these 

areas. The comparison of adaptive capacity to disasters between areas affected by high and 

low frequency of serious inundation may provide important implications for enhancing 

adaptive capacity of households. 

This study aims to assess the adaptive capacity of households in response to natural 

disasters, focusing on typhoons, floods, and inundation in one of the most affected communes 

in Da Nang province and an ancient town in Quang Nam province, hereafter DN commune 

and QN town, respectively. The findings from this research are expected to provide valuable 

insights to inform the development of adaptation policies and guide municipal governance in 

these specific areas. 

2. Materials and methods  

2.1. Study areas 

DN commune, located in the northwest of Da Nang city (Figure 1), is home to an average 

population of 47,338 people [21]. It is subjected to a tropical monsoon climate, with a rainy 

season from August to December and a dry season from January to July [17]. Furthermore, 

being part of Da Nang city, the commune is characterized by diverse topography, including 

mountains in the west and lowlands in the east, which contributes to increased flooding due 

to the proximity of the mountains to the coastline [22]. As a result, the study area frequently 

experiences severe disasters and extreme weather events [17, 22].  

QN town is located on a coastal plain at the estuary of the Thu Bon River basin, in central 

Vietnam. The town’s altitude varies from 70 to 517 meters above sea level, situated within a 

hot and humid tropical monsoon climate characterized by rainy seasons [23]. Accordingly, 

QN town, positioned in a low-lying delta near an estuary and coastal environment (Figure 1), 

is vulnerable to various natural impacts, with the primary threat being floods during rainy 

seasons due to changes in land use in the town and surrounding areas which are exacerbated 

by approximately 25% of Vietnam's typhoons affecting the area [23, 24]. 

 

Figure 1. The study areas in DN commune and QN town. 

2.2. Theoretical framework and indicator-based assessment 

Adaptive capacity refers to the capability of systems, institutions, humans, and other 

organisms to adapt and respond to potential damages, capitalize on opportunities, and address 

the consequences of change [25]. The process of adaptation necessitates the ability to learn 

from past experiences in order to effectively manage the current climate conditions and apply 

those lessons to cope with future climate changes, even in the face of unexpected events. 

Therefore, to assess the preparedness and adaptation of systems to climatic events, it would 
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be necessary to examine multiple time periods encompassing the period before, during, and 

after the event [26]. According to Engle [27], if the system underwent adaptation or 

adjustment, regardless of whether it suffered negative consequences from the prior event, it 

implies the presence of inherent capacity to do so. Consequently, examining the factors that 

either facilitated or hindered these adaptations, as well as where they occurred or did not 

occur, can enhance comprehension of adaptive capacity dynamics.  

However, our understanding of adaptive capacity is continuously evolving, and there is 

currently a lack of consensus regarding its distinct characteristics and determinants at the 

national, community, or household level [28]. In addition, the successful implementation of 

adaptation strategies necessitates various resources, such as financial, social, human, and 

natural capitals. The specific types of required resources, and their relative significance 

depend on the context in which adaptation is pursued, the nature of the hazards faced, and 

the characteristics of the adaptation strategy itself [29]. To tackle this challenge, various 

methods have been developed to assess adaptive capacity, utilizing an indicator-based 

approach. Ramieri et al. [30] assessed coastal vulnerability using a range of independent 

variables, merged into a composite index covering drivers, risks, hazards, exposure, 

sensitivity, impacts, adaptive capacity, and damage. It enables a thorough evaluation of 

various coastal vulnerability aspects within a unified assessment framework. In addition, 19 

indicators, emphasizing diverse aspects such as economic resources, infrastructure, social 

capital, institution, were identified and considered crucial elements in measuring adaptive 

capacity to assess the adaptive capacity of farmers in Mexico [31]. Mai et al. [11] developed 

a set of 17 indicators to assess the socio-economic status of urban households, focusing on 

inherent capacity and municipal services for urban area stability and security. 

In this paper, a composite indicator framework [32] using 13 indicators for quantitative 

assessment of adaptive capacity was proposed (Table 1; Figure 2). Indicators were selected 

based on their relevance, methodological soundness, and data reliability, availability and 

accessibility [32]. Indicators (AC2–AC7) were referenced from Mai et al. [11], other 

indicators were proposed to measure the adaptive capacity in a timely manner for the 

historical disaster event in October 2022 affecting the study areas for proactive adaptation of 

future events (Figure 2). 

Table 1. Indicators for adaptive capacity assessment in two study areas. 

Code Indicators Descriptions Calculation 

AC1 Income stability Accessibility to income stability during disasters Equation (1) 

AC2* Livelihood diversity Number of livelihood sources per household Equation (1) 

AC3* Housing condition 
Categories of housing conditions based on structure, 

permanence, and number of floors 
Equation (1) 

AC4* Insurance coverage 
Percentage of households with health insurance 

Percentage of households with property insurance 
Ratio (%) 

AC5* Education Number of people who have graduated above secondary level Equation (1) 

AC6* Preparedness measures Number of disaster mitigation tools equipped by households Equation (1) 

AC7* Social organizations 
Number of social organizations that household members are 

affiliated 
Equation (1) 

AC8 Social support 
Percentage of households receiving support during and post-
disasters 

Ratio (%) 

AC9 
Disaster warning 

information 

Percentage of households receiving disaster warning 

information 
Ratio (%) 

AC10 Accessibility to clean water Accessibility to clean water during and post-disasters Equation (1) 

AC11 
Accessibility to healthcare 

service 
Accessibility to healthcare service during and post-disasters Equation (1) 

AC12 Accessibility to food Accessibility to food during and post-disasters Equation (1) 

AC13 
Accessibility to financial 

support 
Accessibility to financial support during and post-disasters Equation (1) 

Note: *Mai et al. [11]. 
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Figure 2. Framework for indicator-based assessment of adaptive capacity to disasters. 

2.3. Sociological survey 

The questionnaire was developed in accordance with the proposed indicators for 

assessing adaptive capacity (Table 1). A semi-structured interview using a face-to-face 

method was conducted in the case study areas (Figure 2). A total of 85 households in DN 

commune and QN town were randomly selected to ensure a relatively even spatial 

distribution, various levels of impacts by disasters, and diversity of livelihoods. 

2.4. Data analysis 

The data corresponding to the indicators were coded, normalized by the Min-Max 

method (on a 0–1 scale) [33] using Eq. (1) as follows: 

ij ij

ij

ij ij

X MinX
x

MaxX MinX

−
=

−
                (1) 

where, xij is the normalized value of indicator i of the household j; Xij is the value of the 

indicator i corresponding to household j; Max and Min denote the maximum and minimum 

scaled values of indicator i, respectively. 

Adaptive capacity of households to disasters in each study area was measured as follows:  
n

i1
AC

AC
n

=


                      (2) 

where, AC is the adaptive capacity of households to disasters; ACi is the adaptive 

capacity measured by indicator i; n is the number of indicators. 

The quantitative adaptive capacity levels of households to disasters in each study area 

were evenly classified based on a Likert scale (1–5) and a categorical scale by the OECD 

[32], as shown in Table 2 [34]. 

Table 2. Adaptive capacity assessment scale. 

No. Adaptive capacity level Score 

1 High adaptive capacity 0.81 – 1.00 

2 Relatively high adaptive capacity 0.61 – 0.80 

3 Medium adaptive capacity 0.41 – 0.60 

4 Relatively low adaptive capacity 0.21 – 0.40 

5 Low adaptive capacity 0.00 – 0.20 

Quantitative assessment of adaptive capacity of households to disasters was conducted 

using Excel. A correlation coefficient was performed for correlation among 13 indicators 

using the SPSS 20.0 package. 
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3. Results 

3.1. Adaptive capacity of households to disasters 

Income stability (AC1): The results from interviews showed that over 39.5% of 

households located in DN commune were unable to access income stability during disasters, 

while 31.6% of interviewees in QN town encountered similar difficulties (Figure 3). 

Moreover, approximately 34.2% of households in QN town had full access to stable income. 

In contrast, only 9.3% of those in DN commune had a fully stable income during disasters.  

Livelihood diversity (AC2): A majority of households in two study areas had one 

livelihood (88.6–92.5%) (Figure 4). QN town had a slightly higher percentage of households 

with at least two types of livelihoods compared to DN commune, corresponding to 5% and 

4.5%, respectively (Figure 4). However, there was a larger proportion of households with no 

income source in DN commune, accounting for about 6.8% of total interviewees in that area, 

compared to QN town, where only 2.5% of households reported unstable income sources 

(Figure 4). 

 
Figure 3. Percentage of households accessible to 

income stability during disasters (%). 

Figure 4. Percentage of households with number of 

livelihoods (%). 

Housing condition (AC3): As located in the ancient heritage area, households in QN 

town were prohibited from renovating their houses, resulting in a significant proportion of 

IV-type houses and III-type houses, accounting for 62.5% and 32.5%, respectively (Figure 

5). Meanwhile, despite being situated in the economic development and urbanization area, 

the proportion of IV-type houses among the interviewed households in DN commune was 

higher than that in QN town, accounting for 72.7% of interviewees. Additionally, the rate of 

temporary houses was also significantly higher in DN commune compared to QN town, with 

approximately 13.6% and 2.5%, respectively. 

Insurance coverage (AC4): Most interviewees in DN commune and QN town 

participated in health insurance, with 84.1% and 77.5%, respectively (Figure 6). Meanwhile, 

none of the interviewees in both areas participated in property insurance, possibly due to a 

lack of awareness and understanding about the importance and benefits of property insurance, 

particularly regarding the risks associated with potential property damage or loss from natural 

disasters. 
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Figure 5. Percentage of households with various 

housing condition categories (%). 

Figure 6. Percentage of households with health 

insurance coverage (%). 

Education (AC5): Most of the interviewees in DN commune and QN town had a 

secondary degree or higher (Figure 7). The percentage of interviewees who have graduated 

above the secondary level in QN town was only 18.4%, while in DN commune, the figure 

was slightly higher at about 20.9% (Figure 7). 

Figure 7. Percentage of interviewed people with 

education level (%). 

 
Figure 8. Percentage of households equipped with 

disaster mitigation tools (%). 

Preparedness measures (AC6): Approximately 47.5% of interviewed households in QN 

town were equipped with more than 05 disaster adaptation tools, while in DN commune, only 

25.6% of interviewees had the same level of preparedness (Figure 8). According to the 

interview results, it is notable that a large majority of the interviewees have been long-term 

residents of QN town with nearly 98% residing there for over a decade. In contrast, in DN 

commune, around 40% of the households interviewed had a relatively shorter period of 

residency, being residents for less than 10 years (Figure 8). It could be seen that the sampled  
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households living in their current residence 

for a longer duration were more likely to 

have a higher possibility of taking better 

preparedness measures. 

Social organization (AC7): The survey 

results showed that most of the interviewees 

in QN town did not participate in social 

organizations (83.8%), whereas in DN 

commune, the participation rate was higher, 

with more than 32.6% of the total 

interviewed households being involved in 

social organizations (Figure 9). 

Social support (AC8): In DN commune, 

68.3% of households reported receiving no 

social support during disasters (Figure 10), 

causing a lack of preparedness and resources 

to cope with the challenges posed by 

disasters. On the other hand, in QN town, a 

higher percentage of households, which 

accounted for 85%, indicated a similar 

absence of social support. In addition, in terms of social support after disasters, DN commune 

had a higher percentage of households with access to support after disasters, accounting for 

53.7% of interviewees, compared to QN town, where only 32.5% of households had access 

to support (Figure 10). The interview indicated that in QN town, where floods occur 

frequently, both the local government and people were experienced in dealing with extreme 

weather events, reducing the need for extensive support. However, in DN commune, where 

inundation was less common, local authorities may be less proactive in their response due to 

lower frequency. 

 

Figure 10. Percentage of households receiving support during and post-disasters (%). 

Disaster warning information (AC9): Most interviewees in both DN commune and QN 

town, approximately 85.2% and 97.1% respectively, reported receiving disaster warning 

information (Figure 11). 
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Accessibility to clean water (AC10): 

57.5% of interviewees had full access to 

clean water, the percentage in DN commune 

was dramatically lower, with only 18.2% 

having full access to clean water during 

disasters (Figure 12). After the disasters, the 

percentages of households fully accessible 

to clean water increased to 64.7% and 29.7% 

in QN town and DN commune, respectively 

(Figure 12). The difference in access to 

clean water between QN town and DN 

commune may be attributed to various 

factors. In QN town, houses with additional 

garrets provide shelter and minimize 

damage during disasters. However, 

households in DN commune lacked 

renovation options and faced challenges in 

disaster response. Timely information and 

disaster response experience also differed 

between the two areas. 

 Accessibility to healthcare service (AC11): The percentage of households in QN town 

and DN commune fully accessible to healthcare service during the disasters were 65.0% and 

25.6%, respectively (Figure 13). We also found a high percentage of households in DN 

commune inaccessible to healthcare service during the disasters (37.2%), mainly resulting 

from the historical disaster in October 2022. Approximately 76.5% of interviewees located 

in QN town had full access to healthcare (AC11) after natural disaster events. Meanwhile, in 

DN commune, the figure was significantly lower, with only 47.1% having access to 

healthcare. The interview indicated that the households in QN town were well-acquainted 

with the flood situation in the region. Consequently, they prepared by stocking up on food 

and taking steps to relocate the elderly or vulnerable family members to hospitals nearby. 

 

Figure 12. Percentage of households accessible to clean water during and post-disasters (%). 
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Figure 11. Percentage of households receiving 

disaster warning information (%). 
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Figure 13. Percentage of households accessible to healthcare service during and post-disasters (%). 

Accessibility to food (AC12): The interview results of this study showed a high 

percentage of households (72.5–78.1%) in QN town having full accessibility to food during 

and after disasters, implying a good response to high frequency of disaster in this area (Figure 

14). In DN commune, percentages of households that had moderate and full accessibility to 

food during and after disasters were 64.5% and 87.5%, respectively (Figure 14). 

 

Figure 14. Percentage of households accessible to food during and post-disasters (%). 
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Figure 15. Percentage of households accessible to financial support during and post-disasters (%). 

The averages of adaptive capacity variables are shown in Figure 16 for households in 

two study areas. In which, QN town was assessed at relatively high adaptive capacity with 

an average value of 0.61, while DN commune stands at medium adaptive capacity with an 

average value of 0.55. The data showed that both study areas stated the relatively same level 

of adaptive capacity in livelihood diversity (AC2), housing condition (AC3), and education 

(AC5) (Figure 16). Meanwhile, QN town had a higher adaptive capacity level compared to 

DN commune in terms of income stability (AC1), preparedness measures (AC6), disaster 

warning information (AC9), accessibility to clean water (AC10), healthcare service (AC11), 

food (AC12), and financial support (AC13) (Figure 16). In contrast, DN commune 

demonstrated higher adaptive capacity than QN town in terms of insurance coverage (AC4), 

social organizations (AC7), and social support (AC8) (Figure 16). 

 

Figure 16. Adaptive capacity of households to disasters. 

3.2. Correlation among adaptive capacity indicators 

Table  shows the correlations among adaptive indicators in DN commune and QN town. 

The income stability (AC1) was significantly correlated with education (AC5; r = 0.33, p < 

0.05), preparedness measures (AC6; r = 0.35, p < 0.05), accessibility to clean water (AC10; 

r = 0.40, p < 0.05), healthcare service (AC11; r = 0.43, p < 0.05), and food (AC12; r = 0.37, 

p < 0.05). The significant correlation between preparedness measures (AC6) and accessibility 

to clean water (AC10; r = 0.31, p < 0.05), healthcare service (AC11; r = 0.35, p < 0.05) and 

65.8%
52.8% 50.0%

29.0%

13.2%

22.2%
15.6%

35.5%

5.3%
5.6%

12.5%
6.5%

10.5%
8.3% 12.5%

9.7%

5.3% 11.1% 9.4%
19.4%

0%

20%

40%

60%

80%

100%

DN commune QN town DN commune QN town

During disasters Post–disasters

A
cc

es
si

b
il

it
y
 t

o
 f

in
an

ci
al

 s
u

p
p

o
rt

AC13

Inaccessible Very low accessible Low accessible Moderately accessible Fully accessible

0.0

0.2

0.4

0.6

0.8

1.0
AC1

AC2

AC3

AC4

AC5

AC6

AC7AC8

AC9

AC10

AC11

AC12

AC13

DN commume QN town



J. Hydro-Meteorol. 2024, 19, 61-77; doi:10.36335/VNJHM.2024(19).61-77                           72 

food (AC12; r = 0.33, p < 0.05) were also observed. Similarly, insurance coverage (AC4) 

and financial support during and post–disaster accessibility (AC13) were correlated (r = 0.23, 

p < 0.05). In addition, accessibility to clean water (AC10) were correlated with accessibility 

to healthcare service (AC11; r = 0.77, p = 0.05), food (AC12; r = 0.7, p < 0.05) and financial 

support during and post-disaster accessibility (AC13; r = 0.36, p < 0.05). 

Table 3. Correlation coefficients among adaptive capacity indicators of DN commune and QN town. 

  AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 

AC1 1.00                         

AC2 0.14 1.00                       

AC3 0.00 0.00 1.00                     

AC4 -0.11 -0.10 0.15 1.00                   

AC5 0.33 0.20 0.00 0.00 1.00                 

AC6 0.35 0.15 0.13 0.02 0.15 1.00               

AC7 -0.02 0.06 -0.02 0.22 0.03 0.03 1.00             

AC8 -0.20 -0.05 -0.13 0.15 0.00 0.04 -0.01 1.00           

AC9 0.16 -0.19 -0.06 -0.01 0.01 0.07 -0.31 0.14 1.00         

AC10 0.40 -0.08 0.14 -0.10 -0.09 0.31 -0.23 -0.19 0.08 1.00       

AC11 0.43 0.04 0.15 -0.05 0.06 0.35 -0.13 -0.23 0.13 0.77 1.00     

AC12 0.37 0.02 0.14 0.00 0.08 0.33 -0.15 -0.16 0.24 0.70 0.84 1.00   

AC13 0.23 -0.03 0.16 0.23 0.02 -0.07 0.07 -0.16 0.02 0.36 0.25 0.30 1.00 

*Pearson correlation significance (p < 0.05) is bold. 

4. Discussion 

This study utilized an indicator-based method with 13 indicators to evaluate the adaptive 

capacity of DN commune and QN town to natural disasters, especially typhoons, floods, and 

inundation. Accordingly, results from the analysis of semi-structured interviews from a total 

of 85 households in two study areas revealed the complex and complementary interaction 

among identified adaptive indicators and adaptive capacity of households to respond to 

typhoons, floods, and inundation. A comparison between DN commune and QN town 

enhances the understanding of which concepts shaped the ability to deal with climate risks 

and minimize the loss, thereby contributing effectively to the disaster prevention strategies 

for the regions.  

The results from interviews indicated the low adaptive indicator score in income 

stability, and a medium average value of livelihood diversity and housing conditions in both 

study areas. Despite being located in areas of economic development and urbanization, the 

percentage of households with unstable income was high, leading to a reduction in the ability 

of households in response to and recovery from the impacts of natural disasters. Meanwhile, 

the findings of previous studies showed that the lack of economic resources in households 

leads to susceptibility to disasters due to the difficulties in accessing resources and ability to 

recover from disasters [35]. Furthermore, an increased level of households with stable income 

offers greater opportunities for enhancing housing conditions and acquiring durable assets 

[36]. However, people living in flood-and storm-affected areas in DN town, who often belong 

to low-income groups, frequently allocate a significant amount of their household income 

towards housing repairs or reconstruction after the annual floods and storms [37]. Houses 

situated in low-lying regions often lack safeguards against flooding, such as the absence of 

upper levels for storing valuable items during floods or the presence of sturdy and weighty 

roofs that are challenging to open for emergency escape [38]. Moreover, according to the 

results of interviews, it has been found that due to ongoing local railway construction plans 

over the past 18 years in DN commune have led to a prohibition on construction or renovation 

of houses for households living in the surrounding area, making them more vulnerable to 

natural disaster. A previous study found that individuals with unstable income tend to have a 

short-term perspective due to urgent and immediate issues that restrict their ability to invest 
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in housing resilient to typhoons [39]. Furthermore, renovations of houses in QN town are not 

permitted due to the area’s significant historical value and commitment to preserving its 

ancient character. Thus, these previous findings support the explanation of the results from 

interviews regarding the medium adaptive indicator score of income stability and housing 

conditions. However, QN town usually experienced extended bouts of rain and deluges from 

upstream. When the water level of the Thu Bon River rises, this area is inevitably flooded. 

Households in QN town, accustomed to these conditions, have proactively implemented 

adaptation measures, including the construction of additional stories for shelter during floods. 

In contrast, the interview results indicated that the well-established urban environment and 

an advanced drainage system in DN commune contribute to a complacent attitude among 

residents towards inundation, leading to frequent neglect of precautionary actions against this 

natural calamity. 

Previous research indicates that households with education levels beyond secondary are 

more likely to take preparedness measures [40]. Specifically, individuals with advanced 

education are increasingly likely to engage in preparedness measures such as their exposure 

to disasters, involvement in evacuation drills, knowledge about disasters, and the quantity of 

information sources they access [41]. Based on the findings of research, in comparison to DN 

commune, households located in QN town possess greater capacity to receive and absorb 

information and policies from local authorities due to a higher percentage of households 

having completed education beyond the secondary level. In addition, according to research 

findings, households located in QN town demonstrated a greater level of experience and 

higher probability of adopting preparedness measures against disasters than those who 

located in DN commune. One significant finding of previous research is that the duration of 

the current residence and the number of past disasters positively influence the probability of 

adopting preparedness measures [40]. Moreover, past flood experiences are the primary 

motivators for undertaking preparedness actions [42]. In QN town, the majority of 

households have resided there for over a decade, with some living in the community for up 

to 40 years, indicating a strong sense of long-term residency and stability. In contrast, in the 

DN commune, a significant number of households have relocated from other provinces and 

are deemed temporary residents. Consequently, DN commune exhibits a low adaptive 

capacity for preparedness measures, whereas QN town displays a high adaptive capacity of 

this indicator.  

Social networks play a crucial role during the various phases of hazard and disaster 

events [43]. Sharing experiences among household members and community participation in 

flood risk reduction can encourage households to adopt proactive preparedness measures 

[42]. Furthermore, engaging in social networks can enhance knowledge and the capacity to 

prepare for future natural disasters [44]. Despite receiving warnings about typhoons and 

floods, households in both study areas demonstrated low to very low adaptive capacity for 

participating in social organizations, as indicated by their scores. However, the results 

revealed varying attitudes among households in QN town when discussing this information. 

They said that due to their extensive experience in flood and inundation preparedness, 

allowed both households and local authorities to be well-prepared and self-sufficient, 

eliminating the need for additional support. Conversely, the DN commune’s households 

displayed a passive attitude towards flood prevention due to inadequate preparedness and 

limited knowledge sharing, leading to greater losses. Therefore, promoting awareness and 

sharing knowledge and experiences of the impacts and adaptation measures is essential to 

improve urban households’ capacity to manage natural disasters [45].  

Moreover, lack of infrastructure maintenance can lead to unsafe conditions and diminish 

the adaptive capacity to floods [46]. However, households in DN commune have lower 

adaptive capacity scores regarding food supply, healthcare service and clean water access 

compared to those in QN town. Interviews revealed that QN town’s households adopt 
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proactive strategies during floods, such as stockpiling food and promptly evacuating 

vulnerable individuals’ elderly, sick, and children to safe areas upon receiving government 

warnings. Furthermore, sanitary facilities have been installed on the upper floors, 

demonstrating a high level of accessibility to essential resources, particularly clean water, 

during flood events. In contrast, households in DN commune face challenges in accessing 

these resources due to an inadequate drainage system that fails to account for the highest 

levels of flood risk. Consequently, water is not drained promptly, which exacerbates the 

situation and hampers rescue and support operations during floods. Beyond the lack of 

preparedness, households in DN commune endure frequent risks and substantial damage 

from flooding and inundation, unlike their counterparts in QN town. It is evident in urban 

areas, characterized by extensive concrete paving, effective floodwater management depends 

on well-maintained drainage systems, operational pumps, and the availability of water 

retention areas crucial elements for efficient urban floodwater management [47]. 

The study findings provide crucial insights for the planning and development policies of 

both areas, especially DN commune, by identifying following measures to enhance the 

adaptive capacity of households to natural disasters, thereby reducing vulnerability and 

curtailing losses, including: (i) Developing flood risk maps, identifying vulnerable regions, 

and implementing supportive measures such as assisting in the relocation of residents from 

high-risk zones, enhancing housing as necessary, and assisting low-income households living 

in temporary houses; (ii) Improving community awareness and practices on climate change 

and disaster response; (iii) Enhancing support effectiveness via social organizations and 

training courses on climate change and disaster response; and (iv) Developing concrete 

provincial urban planning and disaster prevention action plan, that considers varying levels 

of disaster risks to enhance the efficiency and quality of provincial infrastructures, with 

particular attention on the drainage system. In addition, DN commune should contemplate 

aiding local residents in constructing well-designed houses that are adapted for flood 

resilience and preparedness for historical inundation events. 

5. Conclusions 

Households in QN town, Quang Nam province, demonstrated relatively high adaptive 

capacity to natural disasters with a score of 0.61 (on a 0–1 scale), while households in DN 

commune, Da Nang city, exhibited lower adaptive capacity with a score of 0.55. It is 

recommended that the adaptive capacity of households located in both areas should be 

enhanced by implementing strategies, planning, and supportive measures, improving 

community awareness and practices, and enhancing support effectiveness. Subjectivity in 

indicator selection, number of indicators, and number of households interviewed were 

limitations of this research. The survey conducted 3 months after the historical inundation 

affecting the study areas may underestimate adaptive capacity to normal disaster events. 

Further studies should be conducted to understand key indicators and key drivers of 

households’ adaptive capacity to disasters. 
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Abstract: Near real-time information about global atmospheric composition, including 
PM2.5 fine dust, is valuable because it helps forecast air quality and manage environmental 
disasters. Recently, NASA’s Global Modeling and Assimilation Office  has released a set 
of near real-time Goddard Earth Observing System models that help analyze and forecast 
global air quality, named GEOS-CF (GEOS Composition Forecast). In particular, GEOS-
CF can simulate the transport from the stratosphere to the troposphere (the stratosphere to 
troposphere transport) which is technically very difficult. In Vietnam’s challenging 
conditions, research and application of GEOS-CF output results must be made. In this study, 
the authors developed a tool named ENAR (Envim Nasa Analysis Result) to help interpret 
GEOS-CF results provided free of charge by NASA to form PM2.5 pollution maps for each 
area hourly across the entire territory of Vietnam. ENAR was applied to build pollution 
maps for the first three months 2024. The results were analyzed to clarify the range of 
pollution levels for each area, including the Hoang Sa and Truong Sa archipelagos, Vietnam. 
These results allow scientific agencies to obtain reliable information for studies predicting 
this type of pollution. 

Keywords: PM2.5; GEOS-CF; ENAR tool; NASA; Vietnam. 
 

1. Introduction 
Air quality forecasts have recently become increasingly important for Vietnam. Over the 

past years, rapid economic growth in cities in Vietnam, such as Ho Chi Minh City and Hanoi, 
has significantly increased the amount of man-made emissions, affecting people’s health [1–
4]. Among pollutants, fine particulate matter (PM) PM2.5 is a significant public health 
concern [5–7]. Adverse health effects have been associated with short- and long-term 
exposure to PM2.5 [8]. PM2.5 is associated with morbidity, mortality, [9] cardiovascular 
disease, respiratory disease, myocardial infarction, increased hospitalization rates [10] and 
other diseases [11]. Accurate exposure assessment of PM2.5 is a prerequisite for investigating 
its adverse health effects. Initial studies estimated PM2.5 at the nearest monitoring station [12]. 
However, the closest monitoring devices cannot capture all variations in PM2.5 
concentrations, and non-differential misclassification occurs [13]. 

It is essential to predict the scope and level of impact of this type of pollution to protect 
human health. In recent years, several studies have been conducted on some large urban areas 
of the country, including the city. Ho Chi Minh city, using models that take into account 

mailto:uyen.le02@hcmut.edu.vn
mailto:longbt62@hcmut.edu.vn
mailto:phamquocbinh2018@gmail.com


J. Hydro-Meteorol. 2024, 19, 78-89; doi:10.36335/VNJHM.2024(19).78-89 79 

chemical reactions and regional scales [14–16]. In the study [17], PM2.5 pollution forecasts 
for Southeast Asia, including Cambodia, Laos, Thailand and Vietnam, were made by 
comparing emission database scenarios for two years, 2019 and 2050. An overview of the 
research shows that existing studies have not yet produced PM2.5 distribution maps for 
Vietnam at any level. To assess the damage caused by this type of pollution, it is necessary 
to build a distribution map of this type of pollution [2], which is also why this study was 
conducted. 

In recent times, air pollution modelling research agencies such as universities space 
research association, goddard earth sciences technology and research, NASA’s global 
modeling and assimilation office, goddard space flight center, TOLNet - tropospheric ozone 
lidar network ground-based profiling of tropospheric ozone has launched many scientific 
products, especially the NASA goddard earth observing system composition forecast 
(GEOS-CF). This product provides users free of charge with 5-day near real-time calculation 
results of air pollutants, including fine particulate matter (PM2.5) [18]. This model combines 
the GEOS weather analysis and forecasting system with the state-of-the-art GEOS-Chem 
chemistry module [19, 20]. The complete model and simulation features for the troposphere 
are given in [21] and provided in [22] for the stratosphere. These models have been calibrated 
and validated against satellite, balloon, lidar observations of stratospheric composition, 
including ozone (O3) measurements and related essential nitrogen and chlorine species 
related to O3 recovery in the stratosphere [22]. These products support NASA field missions 
and evaluate the impact of NASA observations on environmental prediction [22]. 

In conditions where there are still many difficulties in investment funding, exploiting 
these results is necessary because they are provided for free, and these results allow research 
agencies and organizations to access them. latest to quantify the damage caused by pollution 
and provide long-term plans to reduce pollution. This study aims to exploit the results from 
running the GEOS-CF model to build PM2.5 pollution maps across the entire territory of 
Vietnam. On that basis, initial assessments are made about the level and scope of impact on 
different areas of the country. 

2. Materials and Methods 

2.1. GEOS-CF model 
In 2019, NASA’s global modeling and assimilation office  released a suite of near real-

time goddard earth observing system models (GEOS) for analysis and forecasts with delays 
from one month to two months. This product realizes NASA’s field mission, helping the 
agency predict the global environment. This product is widely available to many users. 
Version 1.0 was released in September 2019, followed by version 1.1 in March 2020, version 
1.2 in February 2022 and version 1.3 in December 2022 [18]. The GEOS-CF system uses the 
GEOS-Chem chemical scheme version 12.0.1 (http://geos chem.org) [19]. GEOS-Chem 
includes detailed stratospheric chemistry fully coupled with tropospheric chemistry described 
in [23]. GEOS-Chem calculated the photolysis rate online using the Fast-JX code [24]  
implemented in GEOS-Chem [25]. The gas phase mechanism includes 250 chemicals and 
725 reactions and is solved using the KPP Rosenbrock Kinetic Preprocessor solver [26]. 

GEOS-CF uses two independent aerosol schemes run in parallel. The first scheme is the 
goddard chemistry, transport, aerosol, radiation [27, 28]. The second diagram - mechanism 
GEOS-Chem aerosol, simulates the mass concentrations of significant aerosol components - 
dust, black carbon , organic carbon, sea salt, sulfate, nitrate and ammonium and provides up-
to-date information on secondary organic aerosol (SOA) chemistry [28].  

GEOS-CF uses emissions data from NASA-Harvard, HEMCO [20]. Anthropogenic 
emissions are monthly averages from HTAP v2.2 [29] and RETRO [30], broken down into 
hourly values using weekday and day-specific scale factors by industry [31]. Calculations in 
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GEOS-CF are performed on a cubed-sphere c360 grid [32] (resolution 25 km × 25 km) with 
72 vertical layers with pressure values. At the highest level, the pressure is 0.01 hPa. Input 
data files are provided at ¼ degree horizontal resolution. This global grid has 1440 
longitudinal and 721 latitudinal points, corresponding to a resolution of 0.25° × 0.25°. Model 
output with  1-hour time resolution. The output result is at the altitude closest to the ground 
at level 72, corresponding to an altitude with a pressure of 985 hPa, equivalent to about 1.2 
km [18]. This distance is located in the troposphere, so it directly affects the concentration of 
PM2.5 near the ground and is also the subject of environmental research.  

The GEOS-CF model is calibrated, verified, validated by data from NASA, including 
Satellite, including ACE-FTS v4.1, MLS v5, SAGE III/ISS v5.1, Ozone Watch, OMI 
“TOMS-like” v3 level 3 products, SBUV Merged Ozone product v8.6; Balloon, including 
Ozonesondes; Ground-based, including TOLNet Lidar [1]. 

2.2. Methods and implementation steps 
To achieve the set goals, this study uses ENAR software (Envim Nasa Analysis Result), 

developed by the authors using Python programming, which includes 11 steps. Step 1: 
perform downloading files, download Netcdf files from the website: 
https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/ana/Y{year}/M{month}/D{day}. 
Step 2, the step to search for 24 netCDF files (corresponding to 24 hours) has the following 
form:GEOS-CF.v01.rpl.htf_inst_15mn_g1440x721_x1.{year}{month}{day}{hour}00.nc4 
is performed. After downloading 31×24=744 netCDF files corresponding to 31 days, 24 
hours per day, the conversion step from netCDF file (.nc) → geoTIFF file (.tif) is performed 
(using tools in arcpy to process physical). Step 3: convert the map from this (.tif) format to a 
point shapefile (Extracting Tif → Points). Step 4: performs interpolation with the IDW 
Interpolation method, which helps smooth the map. Step 5: cut and merge this Tiff file with 
the Vietnam map. After the Extracting Map step (the result is that the Tif files have been 
interpolated and interpolated with the Vietnam map), they are converted into a .png file. Step 
6 performs a colour change to identify the level of pollution. 

 
 Figure 1. Method and processing steps. 
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Step 7 calculates the pollution level of the entire Vietnam with three quantities: minimum 
value, maximum value, and average value (Min, Max, Average); the results are exported as 
Excel files. Step 8 exports the necessary quantities for each province/city and islands (Con 
Dao, Truong Sa Islands, Hoang Sa Islands). After cutting and collaging, we will continue to 
change the colour to make it easier to see their pollution level (visualize GEOTiff File) (Step 
9). Finally, to see the level of PM2.5 pollution in Vietnam through each day of that month, we 
will take the .tif files from step 5 to convert them to NetCDF (.nc) files (Step 10) and use the 
tool cdo tool to set the minute, hour, day, month, year for each .nc file. All are merged into 
January.nc file. The book also uses the tool from Panoply (require: Java 11) to convert .nc 
files into a movie file (.mp4) of hourly PM2.5 pollution values (Step 11) (Figure 1). 

3. Results and discussion   

3.1. Pollution distribution in January 2024 
The average daily PM2.5 concentration in January 2024 has a complex spatiotemporal 

distribution, but it is clear that the highest pollution concentration occurs in the North. From 
January 1 to January 2, the concentration decreased slightly, then increased sharply until 
January 5 and gradually decreased until January 7, then continued to increase and decrease 
unevenly until the peak on January 1 to January 30. The highest concentration reached 390.12 
µg/m3, and the lowest reached 4.16 µg/m3. In most provinces in the Red River Delta, it is 
very high. In the two archipelagos of Hoang Sa and Truong Sa Islands, PM2.5 pollution 
concentration is always at the allowable threshold ranging from 3.94-51.24 µg/m3. Figure 2 
shows the average daily PM2.5 concentration variation in January 2024. Figure 3 shows the 
average daily distribution map of PM2.5. Analysis results show that Hanoi and neighbouring 
provinces such as Bac Ninh, Vinh Phuc, and Phu Tho are most affected by pollution. On 4-
5 January 2024, from Quang Binh to the Northern provinces, PM2.5 concentrations reached 
high values. By 6 January 2024, the North and parts of the Southern provinces, such as Long 
An, An, Giang, Dong Thap, and Kien Giang, also had high concentrations. From 15-19 
January 2024, Hanoi, surrounding provinces, Yen Bai, and Hoa Binh,... are greatly affected. 
On 23 January 2024, the entire North stretching to Quang Ngai and part of the Central 
Highlands and Southeast regions had high concentrations. From 24-31 January 2024, the 
scope of influence stretches across the entire northern region to Quang Ngai. 
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Figure 2. Average daily PM2.5 (µg/m3) concentration in January 2024. 
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3.2. Pollution distribution in February 2024 
The average daily PM2.5 concentration in February 2024 has a complex spatiotemporal 

distribution, and high pollution levels always occur in the country’s North. From 1 February 
to 5 February, the concentration gradually decreased, then increased sharply until February 
8 and progressively decreased unevenly over the days, after which the concentration 
increased or decreased steadily. With average monthly concentrations ranging from 5.02-
151.75 µg/m3. Figure 4 below shows the average PM2.5 concentration variation of days in 
February 2024. The PM2.5 concentration distribution map for each day is shown in Figure 5. 

Hanoi capital and surrounding provinces still have alarming pollution levels (Figure 5). 
In the first three days of February 2024, most of the Red River Delta, the Northeast, part of 
the Northwest, and the provinces of Nghe An, Ha Tinh, and part of the South Central coastal 
region will be affected. of pollution. On 4 February 2024, provinces from Quang Nam to the 
North were affected by pollution. On 5-7 April 2024, the North Central region, Northeast, 

Figure 3. PM2.5 pollution distribution map in January 2024. 
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Northwest and Red River Delta, and part of the South Central coastal provinces will be 
affected. From 9-12 February 2024, provinces from Binh Dinh to the North will be highly 
affected. From 12-29 February 2024, the area of influence from central provinces such as 
Quang Tri, Quang Nam, Quang Ngai, and Binh Dinh extended to the North. In February 
2024, the high-impact area has little impact on the Central Highlands, Southeast, and South. 
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Figure 4. Average daily PM2.5 (µg/m3) concentration in February 2024. 

 
Figure 5. PM2.5 pollution distribution map in February 2024. 
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3.3. Pollution distribution in March 2024 
Like the previous two months, the average daily PM2.5 concentration in March 2024 has 

a complex spatiotemporal distribution. The average concentration of this product ranges from 
7.48-187.24 µg/m3. Figure 6 shows the PM2.5 pollution distribution map for the whole of 
Vietnam. Figure 7 shows the variation in average PM2.5 concentration of days in March 2024. 
In the first two days of March 2024, the Red River Delta region, the Northeast, part of the 
Northwest and provinces such as Nghe An and Ha Tinh were severely affected by PM2.5 
pollution. On 3 March 2024, provinces from Quang Binh to the North, by 4 March 2024, 
most provinces from Binh Dinh to the North will be significantly affected. Especially on 5 
March 2024, all of Vietnam will be affected. Hanoi, Hoa Binh, Yen Bai, and parts of the 
Northeast provinces, Phu Yen and Nghe An, are affected. From 9-12 March 2024, the area 
of influence will be from Nghe An-Ha Tinh, extending to the North. From 13-15 March, the 
area of influence covers the Mekong Delta, such as An Giang and Long An. In the remaining 
days of March, the northern region to Nghe An is most affected. 

 

Figure 6. PM2.5 pollution distribution map in March 2024. 
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Figure 7. Average daily PM2.5 (µg/m3) concentration in March 2024. 

3.4. Results of pollution distribution by region 
ENAR software allows exporting tabular results of min/max concentrations and monthly 

averages for seven regions of the country, along with the country’s two Islands of Hoang Sa 
and Truong Sa. The average results for January 2024 are shown in Table 1, Figure 8. It can 
be seen that the three Northern Delta regions, including Northwest, Northeast, and Red River 
Delta, all have much higher min and max concentrations compared to Vietnamese standard, 
followed by North Central, Southeast, Mekong Delta, and South Central Coast. The Central 
Highlands region, Hoang Sa, and Truong Sa Islands are still within allowed limits. Compared 
to January 2024, concentrations in February 2024 in areas improved (concentrations 
decreased significantly). In March 2024, the concentration increased compared to February, 
but it was generally smaller than January 2024. 

 
Figure 8. Average monthly PM2.5 pollution distribution map from January to March 2024. 

Table 1. Concentration by seven regions, Hoang Sa and Truong Sa Islands in January 2024. 

Region 
Concentration (µg/m3) 

Min Max 
Northwest 40.69 174.27 
East Northern 87.37 187.29 
Red river delta 72.56 186.07 
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Region 
Concentration (µg/m3) 

Min Max 
Mekong Delta 8.79 54.83 
South Central Coast 9.73 39.24 
North Central 23.49 140.05 
South East 9.42 56.01 
Highlands 9.36 27.43 
Hoang Sa 14.16 14.21 
Truong sa 7.5 7.82 

Table 2. Concentration by seven regions, Hoang Sa and Truong Sa Islands in February 2024. 

Region Concentration (µg/m3) 
Min Max 

Northwest 41.95 131.57 
East Northern 65.72 149.25 
Red river delta 63.94 151.78 
Mekong Delta 6.2 29.22 
South Central Coast 5.02 44.63 
North Central 27.23 114.92 
South East 6.5 36.05 
Highlands 9.54 28.97 
Hoang Sa 9.86 9.87 
Truong sa 5.02 5.14 

Table 3. Concentration by seven regions, Hoang Sa and Truong Sa Islands in March 2024. 

Region Concentration (µg/m3) 
Min Max 

Northwest 86.41 141.71 
East Northern 65.51 160.29 
Red river delta 60.90 164.68 
Mekong Delta 6.56 26.25 
South Central Coast 8.62 53.13 
North Central 35.37 118.40 
South East 7.15 25.73 
Highlands 14.08 40.32 
Hoang Sa 11.16 11.19 
Truong sa 6.68 7.17 

In the first three months of 2024, the Northeast region is always in the first position, with 
average monthly min/max concentrations ranging from 65.51-187.29 µm/m3. This area has 
the highest exposure risk, often higher than allowed standards. Next is the Northwest region, 
with average monthly min/max concentrations ranging from 40.69-174.27 m/m3 and very 
high exposure risk. On the territory of Vietnam, the Truong Sa and Hoang Sa islands have 
the lowest min/max level of 5.02-7.82 µm/m3. Next is the Central Highlands region, which 
is still relatively “clean” with a min/max of 9.36-27.43 m/m3 and the Mekong Delta, with a 
min/max of 6.2-54.83 µm/m3. The Mekong Delta region still has times when it exceeds 
standards different from the Highlands, Hoang Sa, and Truong Sa Islands. 

4. Conclusion 
NASA’s GEOS Composition Forecast System now provides near real-time estimates of 

the closest atmospheric composition. Five-day daily forecasts at high spatial resolution (0.25° 
latitude × 0.25° longitude up to the lower mesosphere) and high temporal frequency (hourly 
and 3-hourly) published entirely free of charge. For surface air quality, GEOS-CF simulates 
the stratosphere to troposphere transport. The results of running this model have been tested 
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based on NASA's satellite image processing and monitoring system, so they are reliable. This 
study focuses on exploiting PM2.5 concentration results output from GEOS-CF software. 
However, to exploit these results for Vietnam, it is necessary to process the results output 
from GEOS-CF automatically. The research has successfully built an ENAR automation 
module using the Python language, integrating many packages such as Arcpy, Arcgis 
scripting, netCDF4, pandas,... and software such as ArcGIS Pro, OSGeo4W, Cygwin, and 
Panoply. This tool allows the processing of GEOS-CF run results and exporting charts and 
maps to analyze the distribution of PM2.5 pollution throughout the country.  

The results of GEOS-CF validated were analyzed using continuously updating by NASA 
as satellite images, Balloons, and TOLNet Lidar. However, that does not mean that this result 
is reliable in Vietnam, but the authors hope to find colleagues and state agencies to provide 
data to further improve the result of this research. The authors will also continue to conduct 
further research to apply GEOS-CF to Vietnam. The next research directions include finding 
the relationship between PM2.5 pollution levels at an altitude corresponding to a pressure of 
985 hPa and ground-level pollution levels. Next is PM2.5 pollution prediction based on deep 
learning algorithms. 
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Abstract: This study applies the GRU (Gated Recurrent Unit) model when selecting 

different values of batch-size, namely 16, 32, and 64, with varying epochs of 20, 50, 100, 

150, and 200. The input data comprises observations collected by two GNSS CORS stations 

from the VNGEONET network, namely HYEN and CTHO, spanning from August 10, 

2019, to March 18, 2022. Initially, GNSS CORS data is processed using Gamit/Globk 

software to obtain the Up-component, which serves as the input data for the GRU model. 

The research results indicate that the statistical performance metrics of the model, such as 

RMSE and MAE, decrease while the F-Score increases when the batch-size decreases and 

the epoch value increases. In cases where the Up-component exhibits irregular variations 

(seasonal fluctuations), the performance of the GRU model is subpar, with an F-Score of 0 

observed when batch-size values are 32 and 64 and epoch value is 20. For data following 

the pattern of CTHO CORS station, the GRU model performs exceptionally well when 

batch-size is 16 and epoch is 200. However, the forecasting performance is low for data 

from HYEN CORS station, indicating the need for further investigation in the future. 

Keywords: Artificial Intelligence; Batch size; Epoch; GRU; GNSS time-series. 

 

1. Introduction 

Due to technological advancements, data collection has been automated, continuous, or 

temporally dense, resulting in various types of time series data. Time series data in geospatial 

applications include GNSS, satellite altimetry, remote sensing data, etc. GNSS data has been 

applied in atmospheric layer research, oceanic observations, soil moisture monitoring, ice 

sheet observations [1], and tectonic plate movements [2], etc. Altimetry time series data is 

utilized in various marine activities, monitoring marine life, weather and climate forecasting, 

coastal inundation monitoring due to sea level rise or subsidence, natural disaster mitigation, 

etc. [3]. Remote sensing time series data applications include land cover classification [4], 

forest monitoring [5], erosion studies [6], etc. Research [7] has highlighted the extensive 

applications of artificial intelligence in large geospatial datasets, quality assessment, data 

modeling and structuring, data visualization and visual analytics, data mining, and 

knowledge discovery, etc. With the establishment continuosly operation reference station 

(CORS), users are provided with time-series data. The data provided by CORS station 

networks can be applied in various fields such as tectonic plate movement monitoring, sea 
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level monitoring, atmospheric research [8] etc. Data collected by CORS stations firstly need 

to be processed using high-precision GNSS data processing software such as Gamit/Globk 

[9], Bernese [10] etc. The result of this processing is the daily coordinate components of 

CORS stations. To analyze the daily time-series data obtained as mentioned above, various 

traditional solutions have been published, such as least-squares estimation, moving ordinary 

least-squares wavelet decomposition (WD), singular spectrum analysis (SSA), Kalman 

Filter (KF), adaptive wiener filter (AWF), or combinations thereof [11]. Additionally, 

artificial intelligence models have also been applied to analyze GNSS time-series data. 

Five artificial intelligence models, namely attention mechanism with long short time 

memory neural network (AMLSTM), long short time memory neural network (LSTM), 

recurrent neural networks (RNN), support vector machine (SVM), and random forest (RF), 

have been utilized for landslide detection [12]. Additionally, the authors proposed combining 

the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

technique with the LSTM model. Experimental results demonstrated that the CEEMDAN-

LSTM model could be recommended for other landslide prediction studies and has 

significant potential in landslide risk assessment. The study [13] applied Gradient Boosting 

Decision Tree (GBDT), LSTM, and SVM models to analyze GNSS time-series data. The 

results showed that the proposed models had RMSE values ranging from 3mm to 5mm, 

smaller than those of corresponding traditional methods. Moreover, artificial intelligence 

models enable the integration of various factors causing in land surface movement from 

GNSS time series data [13]. 

The GBDT model has been used as a benchmark against the XGBoost and RF models 

for interpolating coordinate values in GNSS time-series data. The computational results 

indicate that the Up-component is interpolated with up to 45% greater accuracy compared 

to traditional methods, with the XGBoost model yielding the poorest interpolation results 

[14]. For each different setting of batch size and epoch, different artificial intelligence 

models will yield different prediction results. Research [15] has compiled errors for both 

training and testing datasets using batch sizes ranging from 64 to 2048. The results indicate 

that a batch size of 128 yields the smallest error for both datasets. Additionally, research [16] 

has shown that the noise level increases as the loss decreases during training and largely 

depends on the model size, with model performance being improved. 

Research [17] has demonstrated that training with small batches has been proven to 

improve generalization performance and allows for significantly smaller memory usage, 

which can also be leveraged to enhance machine throughput. Nesterov and Adam optimizers 

have been found to train more efficiently than baseline models when using large batch sizes. 

There have been several publications on the application of artificial intelligence in analyzing 

time-series data. Author [18] employed a recurrent neural network to forecast meaningful 

wave heights for disaster prevention efforts in Vietnam. Research [19] applied an ANN 

model to analyze GNSS time-series data, yielding an RMSE determination of 0.006m. RNN 

models were chosen by authors [20] to predict surface water quality with an accuracy ranging 

from 75% to 85%. Although some studies have been published, there has been no research 

in the earth science field specifically addressing experimentation with different batch sizes 

and epochs to analyze time-series data. 

This study evaluates the performance of the GRU model by configuring different values 

of batch size and epoch during model execution, applied in a typical case of analyzing GNSS 

time-series data. 

2. Data and Research methodology 

2.1. Data 

The data used in this paper was collected by continuosly operation reference station 

(CORS) receivers, belonging to the VNGEONET network, namely CTHO and HYEN, 
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provided by the Department of Survey and Mapping, Vietnam. Information regarding the 

GNSS data used in this study is provided as shown in Table 1. 

Table 1. Information about measurement data at GNSS CORS stations. 

Station name 
Time 

Receiver type Antenna type 
Interval 

(second) First epoch Last epoch 

CTHO 
2019/08/10 2022/03/18 LEICA GR50 

LEIAR25.R4      

LEIT 
30 

HYEN 

 The positions of the HYEN CORS station and 

the CTHO CORS station are depicted as shown 

in Figure 1. 

2.2. Methodology 

The data as described in Table 1 was 

processed using Gamit/Globk software to obtain 

daily coordinate components (including the 

North, East, and Up components) of the GNSS 

CORS stations. The up-component value series 

was then utilized as the input data for the GRU 

model. The research methodology of the paper is 

provided in Figure 2. 

The GNSS data, once collected, will be 

converted into RINEX data format and analyzed 

using the Gamit/Globk software [21] to obtain 

daily coordinate components of the stations. The 

GNSS data processing procedure in this case has 

been presented in the study [22]. 

The Gated Recurrent Unit (GRU) is a type 

of artificial neural network model, particularly 

suited for sequential data processing 

tasks such as natural language 

processing and time series analysis. 

Developed as an enhancement of the 

traditional recurrent neural network 

(RNN), the GRU addresses some of 

the shortcomings of the standard 

RNN architecture, particularly in 

handling long-range dependencies 

and the vanishing gradient problem. 

One of the key features of the 

GRU is its gating mechanism, which 

allows it to selectively update and 

forget information over time. This 

mechanism consists of update and 

reset gates, which regulate the flow 

of information within the network. 

By adaptively controlling the flow 

of information, the GRU is able to 

capture relevant patterns and 

dependencies in sequential data 

Figure 1. The positions of the HYEN CORS 

station and the CTHO CORS station. 

Figure 2. Experimental method of artificial intelligence model 

testing with different batch sizes and epochs. 
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more effectively. Compared to the long short-term memory (LSTM) model, another popular 

variant of the RNN architecture, the GRU offers similar performance with a simpler 

structure, requiring fewer parameters to train and often achieving faster convergence during 

training. Its computational efficiency and competitive performance make it a popular choice 

for various sequence modeling tasks in both research and practical applications. 

Based on the selected model, Python language and library functions were utilized to 

construct the experimental computation program [23, 24], etc. 

To achieve the desired results, the research team conducted experiments with batch sizes 

set to 16, 32, and 64, and for epochs, values were assigned as 10, 50, 100, 150, and 200, 

respectively. Model evaluation was performed by statistically analyzing performance 

metrics including RMSE, MAE, and F-score. To assess the performance of the model, 

evaluation methods similar to those used in studies [18, 19] were employed. The operation 

method of the GRU model in this case is depicted as shown in Figure 3. 

 

Figure 3. Prediction method with the GRU model. 

3. Results and Discussion 

3.1. Results obtained with the dataset from HYEN CORS station 

From the data in Table 2, it can be observed that the RMSE value increases rapidly when 

the epoch value is small and the batch-size value increases from 16 to 64. For the same batch-

size value, as the epoch value increases, the RMSE value decreases. In the case of the largest 

batch-size value (with a value of 64), the RMSE value decreases very rapidly. The minimum 

RMSE value for HYEN CORS station is achieved at 0.010 when batch-size = 16 and epoch 

= 200. 

Table 2. RMSE determination results with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.543 0.487 0.248 0.017 0.010 

32 5.626 0.557 0.541 0.337 0.103 

64 13.394 0.611 0.651 0.606 0.512 

Table 3. MAE determination results with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.469 0.379 0.192 0.014 0.006 

32 5.618 0.429 0.420 0.261 0.079 

64 13.393 0.468 0.506 0.471 0.398 

The variation in the MAE values for the input data from HYEN CORS station is similar 

to RMSE. The minimum MAE value achieved is 0.006, corresponding to a batch-size of 16 

and epoch of 200. 
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In AI applications, the F-score, also known as the F1-score, is a metric commonly used 

to evaluate the performance of a binary classification model. It is the harmonic mean of 

precision and recall, providing a single measure that balances between these two metrics. 

Precision measures the proportion of true positive predictions among all positive predictions, 

while recall measures the proportion of true positive predictions among all actual positives. 

The F-score ranges from 0 to 1, where a higher score indicates better performance. It's 

particularly useful when the class distribution is imbalanced, as it considers both false 

positives and false negatives. The determined F-Score results in this case are as follows: 

Table 4. Results of F-Score determination with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.312 0.181 0.417 1.000 1.000 

32 0.000 0.181 0.179 0.265 0.473 

64 0.000 0.146 0.174 0.174 0.179 

Table 4 demonstrates the very high performance of the model when selecting batch-size 

= 16 and epoch = 200; when batch-size is set to 32 or 64, with epoch = 20, the model's 

predictive performance equals 0. This aligns perfectly with the significantly large RMSE 

and MAE values. Figures 4, 5, 6 below represent the predicted values, actual values on the 

test dataset, the entire dataset, and the loss curve in the case of batch-size = 16 and epoch = 

200 for the HYEN CORS station dataset. 

 

Figure 4. Predicted values on the test dataset of HYEN CORS station 

 

Figure 5. Actual and predicted values on the entire dataset of HYEN CORS station. 

From Figure 4, it can be observed that the predicted values are significantly higher than 

the actual values. There are several factors that may contribute to this phenomenon, 

including unusual fluctuations in the daily Up-component. To accurately conclude on the 
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aforementioned phenomenon, it is necessary to gather additional closely related data 

concerning the variations of the Up-component, such as meteorological data, hydrological 

and geological data, etc. 

 

Figure 6. Loss curve on the test dataset of HYEN CORS station. 

From Figure 5, it can be observed that the variation in the Up-component displacement 

of HYEN CORS station does not exhibit periodicity as some published results have indicated 

[25]. Figure 7 shows the Up-component results of the HYEN CORS station determined using 

the Gamit/Globk software, serving as evidence for the arguments presented above. 

 

 

Figure 7. Up-component results of the HYEN CORS station were determined by the Gamit/Globk software. 

In Figure 7, the vertical axis represents the daily changes in the up-component 

(measured in mm), while the horizontal axis represents time (measured in years). 

This may lead to the predictive performance of the artificial intelligence model in this 

case not being as high as the results achieved even with the use of a simple artificial 

intelligence model [19]. 

3.2. Results obtained with the dataset from CTHO CORS station 

Table 5. RMSE determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.1523 0.0870 0.00154 0.00098 0.00074 

32 0.1632 0.1513 0.0469 0.00136 0.00129 

64 0.2668 0.1846 0.1410 0.07414 0.00213 

From Table 5, it can be observed that the RMSE values decrease only slightly as the 

batch-size varies from 16 to 64. This indicates the suitability of the artificial intelligence 

model being employed. 
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Table 6. MAE determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.1175 0.0686 0.0010 0.00062 0.00053 

32 0.1255 0.1179 0.0370 0.00084 0.00058 

64 0.2303 0.1424 0.1110 0.05866 0.00091 

Table 7. F-Score determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.5573 0.5653 0.95216 0.9621 0.9589 

32 0.5490 0.5447 0.55288 0.9522 0.9504 

64 0.2312 0.5367 0.54468 0.5778 0.9256 

From the data in Table 5 to Table 7, it can be observed that the fluctuation trends of 

RMSE, MAE, and F-Score values for the data from CTHO CORS stattion are similar to 

those for HYEN CORS station. However, the variation of the Up-component for CTHO 

CORS station is similar to previous publications (Figure 8). 

 

Figure 8. Graph of Up-component of CTHO CORS station determined by Gamit/Globk. 

The up-component values in Figure 8 demonstrate a systematic variation of this 

component for the CTHO CORS station, explaining the F-score values of 0.5490 and 0.2312 

respectively for batch-size = 32 and 64, epoch = 20. The RMSE = 0.00074 and MAE = 

0.00053 for batch-size = 16 and epoch = 200. These indicate very high performance in 

predicting the determined quantity from the GNSS time-series data compared to existing 

publications [13,19,26]. These are promising preliminary results in the application of 

artificial intelligence models for analyzing GNSS time-series data. 

Figure 9. Predicted and actual values for the test dataset of the CTHO CORS station. 
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The graphs representing the actual values, predicted values on the test dataset, the entire 

dataset, and the loss curve when analyzing the CTHO CORS station data in the case of batch-

size = 16 and epoch = 200 are shown in Figures 9 to 11. 

 

Figure 10. Predicted and actual values for the entire dataset of the CTHO CORS station. 

 

Figure 11. Loss curve of the test dataset of the CTHO CORS station. 

Figures 9 and 10 demonstrate the very high suitability of the GRU model for the data of 

the CTHO CORS station, as evidenced by the predicted values closely matching the actual 

values across the datasets. Additionally, the loss value nearly approaches zero after a few 

epochs (Figure 11). 

4. Conclusion  

This study successfully experimented with different values of batch-size and epoch when 

analyzing GNSS time-series data using the artificial model. When applying artificial 

intelligence (specifically the GRU model) to analyze GNSS time series, it is necessary to 

select a small batch size value (specifically 16) to achieve the best forecasting performance 

with the model. 

The experimental results demonstrate that when the up-component varies irregularly, 

unlike in the case of HYEN CORS station, predicting using artificial intelligence models is 

not very effective. Specifically, when the epoch value is 20 and the batch-size is 32 and 64 

respectively, the GRU model cannot predict the Up-component values in this case, as 

indicated by an F-Score of 0. 

Statistical metrics such as RMSE and MAE decrease, while F-Score increases (indicating 

improved prediction performance with artificial intelligence models) as the batch-size 

decreases and epoch increases. The prediction results show very high performance for the 
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CTHO CORS station dataset when batch-size = 16 and epoch = 200, demonstrated by metrics 

such as RMSE = 0.00074, MAE = 0.00053, and F-Score = 0.9589. This performance is 

excellent compared to existing publications. 

One limitation of this study is that it does not propose a solution for forecasting or 

analyzing the Up-component in cases where the variation is irregular, as in the case of the 

HYEN CORS station. This is an issue that requires further investigation in the future. 

Author contributions: Conceptualization: L.D.T., N.G.T., H.N.D.Q.; Methodology: L.D.T., 

N.G.T., H.N.D.Q.; Data processing: N.G.T., N.N.D.Q.; Writing - original draft: L.D.T., 

N.G.T., H.N.D.Q.; Writing - review and editing: N.G.T. 

Declaration: The authors collectively declare that this article is the result of their research, 

not previously published elsewhere, and not copied from previous studies; there is no conflict 

of interest among the authors. 

Acknowledgments: The authors of this paper sincerely thank the Department Of Survey, 

Mapping and Geographic Information Vietnam for providing the data; the Ministry of 

Education and Training under project code B2022-MDA-09 for providing the funding to 

conduct this research. 

References 

1. Yu, K.; Rizos C.; Burage, D.; Dempster, A.G.; Zhang, K.; Markgraf, M. An overview 

of GNSS remote sensing. EURASIP J. Adv. Signal Process. 2014, 134, 1–14. 

2. Bastos, L.; Bos, M.; Fernandes, R.M. Deformation and tectonics: contribution of GPS 

measurements to plate tectonics–overview and recent developments. Sci. Geodesy-I. 

2010, 155–184. 

3. Srinivasan, M.; Tsontos, V. Satellite altimetry for ocean and coastal applications: A 

review. Remote Sens. 2023, 15(16), 3939. https://doi.org/10.3390/rs15163939. 

4. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for 

land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 

55–72. 

5. Banskota, A.; Kayastha N.; Falkowski M.J.; Wulder M.A.; Froese R.E.; White J.C. 

Forest monitoring using Landsat time series data: A review. Can. J. Remote Sens. 

2014, 40(5), 362–384. 

6. Vrieling, A.J.C. Satellite remote sensing for water erosion assessment: A review. 

Catena 2006, 65(1), 2–18. 

7. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, A.; 

Jiang, B.; Haworth, J.; Stein, A.; Cheng, T. Geospatial big data handling theory and 

methods: A review and research challenges. ISPPS J. Photogramm. Remote Sens.  

2016, 115, 119–133. 

8. Trong, N.G.; Tinh, L.Đ.; Cuong, N.V.; Quang, P.N. GNSS Data Processing: Theory, 

Software, and Applications. Transport Publishing House, 2023, pp. 300.  

9. Li, Y. Analysis of GAMIT/GLOBK in high-precision GNSS data processing for 

crustal deformation. Earthquake Res. Adv. 2021, 1(8-11), 100028. 

https://doi.org/10.1016/j.eqrea.2021.100028. 

10. Cetin, S.; Aydin, C.; Dogan, U. Comparing GPS positioning errors derived from 

GAMIT/GLOBK and Bernese GNSS software packages: A case study in CORS-TR 

in Turkey. Surv. Rev. 2019, 51(369), 533–543. 

11. Klos, A.; Bogusz, J.; Bos, M.S.; Gruszczynska, M. Modelling the GNSS time series: 

different approaches to extract seasonal signals. Geodetic Time Ser. Anal. Earth Sci.  

2020, pp. 211–237. 

12. Wang, J.; Nie, G.; Gao, S.; Wu, S.; Li, H.; Ren, X. Landslide deformation prediction 

based on a GNSS time series analysis and recurrent neural network model. Remote 

Sens. 2021, 13(6), 1055. https://doi.org/10.3390/rs13061055. 



J. Hydro-Meteorol. 2024, 19, 90-99; doi:10.36335/VNJHM.2024(19).90-99 99 

13. Gao, W.; Li, Z.; Chen, Q.; Jiang, W.; Feng, Y. Modelling and prediction of GNSS 

time series using GBDT, LSTM and SVM machine learning approaches. J. Geod. 

2022, 96(10), 71. https://doi.org/10.1007/s00190-022-01662-5. 

14. Li, Z.; Lu, T.; Yu, K.; Wang, J. Interpolation of GNSS position time series using 

GBDT, XGBoost, and RF machine learning algorithms and models error analysis. 

Remote Sens. 2023, 15(18), 4374. https://doi.org/10.3390/rs15184374. 

15. Hoffer, E.; Hubara, I.; Soudry, D. Train longer, generalize better: Closing the 

generalization gap in large batch training of neural networks. Adv. Neural Inf. 

Process. Syst. 2017, 1–13. 

16. McCandlish, S.; Kaplan, J.; Amodei, D.; Team, O.D. An empirical model of large-

batch training. ArXiv 2018, 1–35. https://doi.org/10.48550/arXiv.1812.06162. 

17. Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. 

Comput. Sci. Mach. Learn. 2018, 1–18. https://doi.org/10.48550/arXiv.1804.07612. 

18. Thai, T.H.; Khiem, M.V.; Thuy, N.B.; Ha, B.M.; Ngoc, P.K. Building a regression 

neural network model to predict significant wave heights at Con Co station, Quang 

Tri, Vietnam. J. Hydro-Meteorol. 2022, EME4, 73–84.  

19. Phong, D.V.; Trong, N.G.; Chien, N.V.; Thanh, N.H.; Ha, L.L.; Quan, N.V.; Quang, 

P.N. Analysis of land vertical movement using ANN function from the results of 

processing GNSS time series data. J. Hydro-Meteorol. 2023, 752, 41–50. 

20. Phong, N.D.; Duong, H.H. Application of deep learning models in forecasting surface 

water quantity of Bac Hung Hai irrigation system. Water Resour. Mag. 2023, 1, 61–

72. 

21. Available online: https://geoweb.mit.edu/gg/. 

22. Trong, N.G.; Nghia, N.V.; Khai, P.C.; Thanh, N.H.; Ha, L.L.; Dung, V.T.; Quan, 

N.V.; Quang, P.N. Determination of tectonic velocities in Vietnam territory based on 

data of CORS stations of VNGEONET network. J. Hydro-Meteorol. 2022, 739, 59–

66. 

23. Available online: https://www.python.org/. 

24. Available online: https://anaconda.org/anaconda/pandas. 

25. Savchuk, S.; Doskich, S.; Golda, P.; Rurak, A. The Seasonal Variations Analysis of 

Permanent GNSS Station Time Series in the Central-East of Europe. Remote Sens. 

2023, 15(15), 3858. https://doi.org/10.3390/rs15153858. 

26. Carbonari, R.; Riccardi, U.; Martino, P.D.; Cecere, G.; Maio, R.D. Wavelet-like 

denoising of GNSS data through machine learning. Application to the time series of 

the Campi Flegrei volcanic area (Southern Italy). Geomatics Nat. Hazards Risk 2023, 

14(1), 2187271. https://doi.org/10.1080/19475705.2023.2187271. 



Table of content
1 Minh, T.N. Application of MNDWI index for flood damage area calculation in Lam 

river basin using google earth engine platform. J. Hydro-Meteorol. 2024, 19, 1–11. 

47

Phu, H.; Han, H.T.N.; Nu, T.N. Analytical methods used in microplastics identification: A 
review. J. Hydro-Meteorol. 2024, 19, 12–22. 

12

Huong, N.T.T.; Thu, P.A.; Thao, V.T.N. Estimation of the virtual water trade of agri-
cultural products between Vietnam and China. J. Hydro-Meteorol. 2024, 19, 23–35. 

Uyen, L.K.; Binh, P.Q.; Long, B.T. Exploiting the results of running the GEOS-CF model 
to evaluate PM2.5 concentration in near real-time in Vietnam. J. Hydro-Meteorol. 2024, 19, 
78–89. 

23

Ly, N.T.; Huong, T.T.; Yuki, I.I.; Duong, N.T.; Hien, N.T.; Yeshus, U.; Ha, N.T.H. As-
sessment of household adaptive capacity to disasters: Two comparative case studies in 
Central Vietnam. J. Hydro-Meteorol. 2024, 19, 61–77. 

61

78

Au, N.H. Application GIS and remote sensing methods to assess the change in land sur-
face temperature in Ba Ria Vung Tau Province, Vietnam. J. Hydro-Meteorol. 2024, 19, 
47–60. 

90 Tinh, L.D.; Quoc, H.N.D.; Trong, N.G. Exploring the training results of machine learn-
ing models using different batch sizes and epochs: A case study with GNSS time series 
data. J. Hydro-Meteorol. 2024, 19, 90–99. 

36 Huy, N.A.; Ty, T.V.; Duy, D.V.; Dat, P.T.; Man, T.K.; Dat, N.T.T.; Choi, Q.V. Longshore 
sediment transport rate at a pocket beach in Phu Quoc City, Kien Giang Province, Viet 
nam. J. Hydro-Meteorol. 2024, 19, 36–46. 


	bìa TA năm 2024-trang
	Mục lục truocT6
	1
	2
	3
	4
	5
	6
	7. Proofreading
	1. Introduction
	2. Materials and Methods
	2.1. GEOS-CF model
	2.2. Methods and implementation steps

	3. Results and discussion
	3.1. Pollution distribution in January 2024
	3.2. Pollution distribution in February 2024
	3.3. Pollution distribution in March 2024
	3.4. Results of pollution distribution by region

	4. Conclusion

	8.
	muc luc saut6.final

